Spaces:
Running
Running
import os | |
import pytest | |
import torch | |
import whisper | |
from whisper.tokenizer import get_tokenizer | |
def test_transcribe(model_name: str): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = whisper.load_model(model_name).to(device) | |
audio_path = os.path.join(os.path.dirname(__file__), "jfk.flac") | |
language = "en" if model_name.endswith(".en") else None | |
result = model.transcribe( | |
audio_path, language=language, temperature=0.0, word_timestamps=True | |
) | |
assert result["language"] == "en" | |
assert result["text"] == "".join([s["text"] for s in result["segments"]]) | |
transcription = result["text"].lower() | |
assert "my fellow americans" in transcription | |
assert "your country" in transcription | |
assert "do for you" in transcription | |
tokenizer = get_tokenizer(model.is_multilingual) | |
all_tokens = [t for s in result["segments"] for t in s["tokens"]] | |
assert tokenizer.decode(all_tokens) == result["text"] | |
assert tokenizer.decode_with_timestamps(all_tokens).startswith("<|0.00|>") | |
timing_checked = False | |
for segment in result["segments"]: | |
for timing in segment["words"]: | |
assert timing["start"] < timing["end"] | |
if timing["word"].strip(" ,") == "Americans": | |
assert timing["start"] <= 1.8 | |
assert timing["end"] >= 1.8 | |
timing_checked = True | |
assert timing_checked | |