Spaces:
Running
Running
import os | |
from trainer import Trainer, TrainerArgs | |
from TTS.config.shared_configs import BaseDatasetConfig | |
from TTS.tts.configs.delightful_tts_config import DelightfulTtsAudioConfig, DelightfulTTSConfig | |
from TTS.tts.datasets import load_tts_samples | |
from TTS.tts.models.delightful_tts import DelightfulTTS, DelightfulTtsArgs, VocoderConfig | |
from TTS.tts.utils.text.tokenizer import TTSTokenizer | |
from TTS.utils.audio.processor import AudioProcessor | |
data_path = "" | |
output_path = os.path.dirname(os.path.abspath(__file__)) | |
dataset_config = BaseDatasetConfig( | |
dataset_name="ljspeech", formatter="ljspeech", meta_file_train="metadata.csv", path=data_path | |
) | |
audio_config = DelightfulTtsAudioConfig() | |
model_args = DelightfulTtsArgs() | |
vocoder_config = VocoderConfig() | |
delightful_tts_config = DelightfulTTSConfig( | |
run_name="delightful_tts_ljspeech", | |
run_description="Train like in delightful tts paper.", | |
model_args=model_args, | |
audio=audio_config, | |
vocoder=vocoder_config, | |
batch_size=32, | |
eval_batch_size=16, | |
num_loader_workers=10, | |
num_eval_loader_workers=10, | |
precompute_num_workers=10, | |
batch_group_size=2, | |
compute_input_seq_cache=True, | |
compute_f0=True, | |
f0_cache_path=os.path.join(output_path, "f0_cache"), | |
run_eval=True, | |
test_delay_epochs=-1, | |
epochs=1000, | |
text_cleaner="english_cleaners", | |
use_phonemes=True, | |
phoneme_language="en-us", | |
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), | |
print_step=50, | |
print_eval=False, | |
mixed_precision=True, | |
output_path=output_path, | |
datasets=[dataset_config], | |
start_by_longest=False, | |
eval_split_size=0.1, | |
binary_align_loss_alpha=0.0, | |
use_attn_priors=False, | |
lr_gen=4e-1, | |
lr=4e-1, | |
lr_disc=4e-1, | |
max_text_len=130, | |
) | |
tokenizer, config = TTSTokenizer.init_from_config(delightful_tts_config) | |
ap = AudioProcessor.init_from_config(config) | |
train_samples, eval_samples = load_tts_samples( | |
dataset_config, | |
eval_split=True, | |
eval_split_max_size=config.eval_split_max_size, | |
eval_split_size=config.eval_split_size, | |
) | |
model = DelightfulTTS(ap=ap, config=config, tokenizer=tokenizer, speaker_manager=None) | |
trainer = Trainer( | |
TrainerArgs(), | |
config, | |
output_path, | |
model=model, | |
train_samples=train_samples, | |
eval_samples=eval_samples, | |
) | |
trainer.fit() | |