File size: 11,968 Bytes
75618ca
 
 
 
 
 
 
5f3cf18
75618ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87ad8f4
 
5f3cf18
75618ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcff9ec
75618ca
 
87ad8f4
75618ca
 
 
 
 
 
87ad8f4
75618ca
 
 
 
 
 
 
 
87ad8f4
75618ca
 
 
 
 
 
 
 
 
5f3cf18
75618ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcff9ec
 
75618ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f225af
75618ca
 
 
bcff9ec
75618ca
 
 
 
 
 
 
 
bcff9ec
75618ca
bcff9ec
75618ca
 
bcff9ec
75618ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcff9ec
 
75618ca
 
 
 
bcff9ec
 
 
75618ca
 
bcff9ec
75618ca
 
 
 
 
 
bcff9ec
75618ca
 
 
 
 
 
 
 
 
 
bcff9ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75618ca
 
87ad8f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from PIL import Image
import streamlit as st
from streamlit_drawable_canvas import st_canvas
from streamlit_lottie import st_lottie
from streamlit_option_menu import option_menu
import requests
import os 
os.system('pip install streamlit==1.19.0')

import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random

from huggingface_hub import hf_hub_download
from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from annotator.hed import HEDdetector, nms
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSampler

st.set_page_config(
        page_title="ControllNet",
        page_icon="🖥️",
        layout="wide",
        initial_sidebar_state="expanded"
    )

save_memory = False

@st.cache_data
def load_model():
    model_path = hf_hub_download('lllyasviel/ControlNet', 'models/control_sd15_scribble.pth')
    model = create_model('./models/cldm_v15.yaml').cpu()
    model.load_state_dict(load_state_dict(model_path, location='cuda'))
    model = model.cuda()
    return model

def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta):
    with torch.no_grad():
   
        input_image = HWC3(input_image[:, :, 0])
        detected_map = apply_hed(resize_image(input_image, detect_resolution))
        detected_map = HWC3(detected_map)
        img = resize_image(input_image, image_resolution)
        H, W, C = img.shape

        detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
        detected_map = nms(detected_map, 127, 3.0)
        detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
        detected_map[detected_map > 4] = 255
        detected_map[detected_map < 255] = 0

        control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
        control = torch.stack([control for _ in range(num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()

        if seed == -1:
            seed = random.randint(0, 2147483647)
        seed_everything(seed)

        if save_memory:
            model.low_vram_shift(is_diffusing=False)

        cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
        un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
        shape = (4, H // 8, W // 8)

        if save_memory:
            model.low_vram_shift(is_diffusing=True)

        model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13)  # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
        samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
                                                     shape, cond, verbose=False, eta=eta,
                                                     unconditional_guidance_scale=scale,
                                                     unconditional_conditioning=un_cond)

        if save_memory:
            model.low_vram_shift(is_diffusing=False)

        x_samples = model.decode_first_stage(samples)
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)

        results = [x_samples[i] for i in range(num_samples)]
    # return [255 - detected_map] + results
    return results

@st.cache_data
def load_lottieurl(url: str):
    r = requests.get(url)
    if r.status_code != 200:
        return None
    return r.json()

model = load_model()
ddim_sampler = DDIMSampler(model)
apply_hed = HEDdetector()

def main():    
    lottie_penguin = load_lottieurl('https://assets5.lottiefiles.com/datafiles/B8q1AyJ5t1wb5S8a2ggTqYNxS1WiKN9mjS76TBpw/articulation/articulation.json')
    st.header("Generate image with ControllNet")
    with st.sidebar:
        st_lottie(lottie_penguin, height=200)
        choose = option_menu("Generate image", ["Upload", "Canvas", "Image Gallery"],
                            icons=['cloud-upload', 'file-plus', 'collection'],
                            menu_icon="infinity", default_index=0,
                            styles={
                                "container": {"padding": ".0rem", "font-size": "14px"},
                                "nav-link-selected": {"color": "#000000", "font-size": "16px"},
                            }
                            )
    st.sidebar.markdown(
        """
    ___
    <p style='text-align: center'>
    ControlNet is as fast as fine-tuning a diffusion model to support additional input conditions
    <br/>
    <a href="https://arxiv.org/abs/2302.05543" target="_blank">Article</a>
    </p>
    <p style='text-align: center; font-size: 14px;'>
    Spaces creating by
    <br/>
    <a href="https://www.linkedin.com/in/vumichien/" target="_blank">Chien Vu</a>
    <br/>
    <img src='https://visitor-badge.glitch.me/badge?page_id=Canvas.ControlNet' alt='visitor badge'>
    </p>
            """,
        unsafe_allow_html=True,
    )
    if choose == 'Upload':
        with st.form(key='generate_form'):
            upload_file = st.file_uploader("Upload image", type=["png", "jpg", "jpeg"])
            prompt = st.text_input(label="Prompt", placeholder='Type your instruction')
            col11, col12 = st.columns(2)
            with st.expander('Advanced option', expanded=False):
                col21, col22 = st.columns(2)
                with col21:
                    image_resolution = st.slider(label="Image Resolution", min_value=256, max_value=512, value=512, step=256)
                    strength = st.slider(label="Control Strength", min_value=0.0, max_value=2.0, value=1.0, step=0.01)
                    guess_mode = st.checkbox(label='Guess Mode', value=False)
                    detect_resolution = st.slider(label="HED Resolution", min_value=128, max_value=1024, value=512, step=1)
                    ddim_steps = st.slider(label="Steps", min_value=1, max_value=100, value=20, step=1)
                with col22:
                    scale = st.slider(label="Guidance Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1)
                    seed = st.number_input(label="Seed", min_value=-1, value=-1)
                    eta = st.number_input(label="eta (DDIM)", value=0.0)
                    a_prompt = st.text_input(label="Added Prompt", value='best quality, extremely detailed')
                    n_prompt = st.text_input(label="Negative Prompt",
                                          value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
                    
            generate_button = st.form_submit_button(label='Generate Image')

            if upload_file:
                input_image = np.asarray(Image.open(upload_file).convert("RGB"))
                print("input_image", input_image.shape)             

            if generate_button:
                with st.spinner(text=f"It may take up to 1 minute under high load. Generating images..."):
                    results = process(input_image, prompt, a_prompt, n_prompt, 1, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta)
                    print("input_image", input_image.shape)
                    print("results", results[0].shape)
                    H, W, C = input_image.shape
                    output_image = cv2.resize(results[0], (W, H), interpolation=cv2.INTER_AREA)
                    col11.image(input_image, channels='RGB', width=None, clamp=False, caption='Input image')
                    col12.image(output_image, channels='RGB', width=None, clamp=False, caption='Generated image')

    elif choose == 'Canvas':
        with st.form(key='canvas_generate_form'):
            # Specify canvas parameters in application
            stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 3)
            stroke_color = st.sidebar.color_picker("Stroke color hex: ")
            bg_color = st.sidebar.color_picker("Background color hex: ", "#eee")
            realtime_update = st.sidebar.checkbox("Update in realtime", True)
            # Create a canvas component
            col31, col32 = st.columns(2)
            with col31:
                canvas_result = st_canvas(
                    fill_color="rgba(255, 165, 0, 0.3)",  # Fixed fill color with some opacity
                    stroke_width=stroke_width,
                    stroke_color=stroke_color,
                    background_color=bg_color,
                    background_image=None,
                    update_streamlit=realtime_update,
                    height=512,
                    width=512,
                    drawing_mode="freedraw",
                    point_display_radius=0,
                    key="canvas",
                )

            prompt = st.text_input(label="Prompt", placeholder='Type your instruction')   

            with st.expander('Advanced option', expanded=False):
                col41, col42 = st.columns(2)
                
                with col41:
                    image_resolution = st.slider(label="Image Resolution", min_value=256, max_value=512, value=512, step=256)
                    strength = st.slider(label="Control Strength", min_value=0.0, max_value=2.0, value=1.0, step=0.01)
                    guess_mode = st.checkbox(label='Guess Mode', value=False)
                    detect_resolution = st.slider(label="HED Resolution", min_value=128, max_value=1024, value=512, step=1)
                    ddim_steps = st.slider(label="Steps", min_value=1, max_value=100, value=20, step=1)
                
                with col42:
                    scale = st.slider(label="Guidance Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1)
                    seed = st.number_input(label="Seed", min_value=-1, value=-1)
                    eta = st.number_input(label="eta (DDIM)", value=0.0)
                    a_prompt = st.text_input(label="Added Prompt", value='best quality, extremely detailed')
                    n_prompt = st.text_input(label="Negative Prompt",
                                          value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')

            # Do something interesting with the image data and paths
            generate_button = st.form_submit_button(label='Generate Image')
            if generate_button:
                if canvas_result.image_data is not None:
                    input_image = canvas_result.image_data
                    with st.spinner(text=f"It may take up to 1 minute under high load. Generating images..."):
                        results = process(input_image, prompt, a_prompt, n_prompt, 1, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta)
                        H, W, C = input_image.shape
                        output_image = cv2.resize(results[0], (W, H), interpolation=cv2.INTER_AREA)
                        col32.image(output_image, channels='RGB', width=None, clamp=True, caption='Generated image')
    
    elif choose == "Image Gallery":
        with st.expander('Image gallery', expanded=True):
            col01, col02, = st.columns(2)
            with col01:
                st.image('demo/example_1.jpg', caption="Sport car")
                st.image('demo/example_2.jpg', caption="Dog house")
                st.image('demo/example_3.jpg', caption="Guitar")
            with col02:
                st.image('demo/example_4.jpg', caption="Sport car")
                st.image('demo/example_5.jpg', caption="Dog house")
                st.image('demo/example_6.jpg', caption="Guitar")

        
if __name__ == '__main__':
    main()