Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import streamlit as st
|
3 |
+
from streamlit_drawable_canvas import st_canvas
|
4 |
+
from streamlit_lottie import st_lottie
|
5 |
+
from streamlit_option_menu import option_menu
|
6 |
+
import requests
|
7 |
+
import os
|
8 |
+
os.system('git clone https://github.com/lllyasviel/ControlNet.git')
|
9 |
+
os.chdir('/home/user/app/ControlNet')
|
10 |
+
|
11 |
+
from share import *
|
12 |
+
import config
|
13 |
+
|
14 |
+
import cv2
|
15 |
+
import einops
|
16 |
+
import gradio as gr
|
17 |
+
import numpy as np
|
18 |
+
import torch
|
19 |
+
import random
|
20 |
+
|
21 |
+
from huggingface_hub import hf_hub_download
|
22 |
+
from pytorch_lightning import seed_everything
|
23 |
+
from annotator.util import resize_image, HWC3
|
24 |
+
from annotator.hed import HEDdetector, nms
|
25 |
+
from cldm.model import create_model, load_state_dict
|
26 |
+
from cldm.ddim_hacked import DDIMSampler
|
27 |
+
|
28 |
+
st.set_page_config(
|
29 |
+
page_title="ControllNet",
|
30 |
+
page_icon="🖥️",
|
31 |
+
layout="wide",
|
32 |
+
initial_sidebar_state="expanded"
|
33 |
+
)
|
34 |
+
|
35 |
+
@st.cache_resource
|
36 |
+
def load_model():
|
37 |
+
model_path = hf_hub_download('lllyasviel/ControlNet', 'models/control_sd15_scribble.pth')
|
38 |
+
model = create_model('./models/cldm_v15.yaml').cpu()
|
39 |
+
model.load_state_dict(load_state_dict(model_path, location='cuda'))
|
40 |
+
model = model.cuda()
|
41 |
+
return model
|
42 |
+
|
43 |
+
|
44 |
+
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta):
|
45 |
+
with torch.no_grad():
|
46 |
+
|
47 |
+
input_image = HWC3(input_image[:, :, 0])
|
48 |
+
detected_map = apply_hed(resize_image(input_image, detect_resolution))
|
49 |
+
detected_map = HWC3(detected_map)
|
50 |
+
img = resize_image(input_image, image_resolution)
|
51 |
+
H, W, C = img.shape
|
52 |
+
|
53 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
|
54 |
+
detected_map = nms(detected_map, 127, 3.0)
|
55 |
+
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
|
56 |
+
detected_map[detected_map > 4] = 255
|
57 |
+
detected_map[detected_map < 255] = 0
|
58 |
+
|
59 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
60 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
61 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
62 |
+
|
63 |
+
if seed == -1:
|
64 |
+
seed = random.randint(0, 65535)
|
65 |
+
seed_everything(seed)
|
66 |
+
|
67 |
+
if config.save_memory:
|
68 |
+
model.low_vram_shift(is_diffusing=False)
|
69 |
+
|
70 |
+
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
71 |
+
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
72 |
+
shape = (4, H // 8, W // 8)
|
73 |
+
|
74 |
+
if config.save_memory:
|
75 |
+
model.low_vram_shift(is_diffusing=True)
|
76 |
+
|
77 |
+
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
|
78 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
79 |
+
shape, cond, verbose=False, eta=eta,
|
80 |
+
unconditional_guidance_scale=scale,
|
81 |
+
unconditional_conditioning=un_cond)
|
82 |
+
|
83 |
+
if config.save_memory:
|
84 |
+
model.low_vram_shift(is_diffusing=False)
|
85 |
+
|
86 |
+
x_samples = model.decode_first_stage(samples)
|
87 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
88 |
+
|
89 |
+
results = [x_samples[i] for i in range(num_samples)]
|
90 |
+
# return [255 - detected_map] + results
|
91 |
+
return results
|
92 |
+
|
93 |
+
@st.cache_data
|
94 |
+
def load_lottieurl(url: str):
|
95 |
+
r = requests.get(url)
|
96 |
+
if r.status_code != 200:
|
97 |
+
return None
|
98 |
+
return r.json()
|
99 |
+
|
100 |
+
model = load_model()
|
101 |
+
ddim_sampler = DDIMSampler(model)
|
102 |
+
apply_hed = HEDdetector()
|
103 |
+
|
104 |
+
def main():
|
105 |
+
lottie_penguin = load_lottieurl('https://assets5.lottiefiles.com/datafiles/B8q1AyJ5t1wb5S8a2ggTqYNxS1WiKN9mjS76TBpw/articulation/articulation.json')
|
106 |
+
st.header("Generate image with ControllNet")
|
107 |
+
with st.sidebar:
|
108 |
+
st_lottie(lottie_penguin, height=200)
|
109 |
+
choose = option_menu("Generate image", ["Upload", "Canvas"],
|
110 |
+
icons=['collection', 'file-plus'],
|
111 |
+
menu_icon="infinity", default_index=0,
|
112 |
+
styles={
|
113 |
+
"container": {"padding": ".0rem", "font-size": "14px"},
|
114 |
+
"nav-link-selected": {"color": "#000000", "font-size": "16px"},
|
115 |
+
}
|
116 |
+
)
|
117 |
+
st.sidebar.markdown(
|
118 |
+
"""
|
119 |
+
___
|
120 |
+
<p style='text-align: center'>
|
121 |
+
ControlNet is as fast as fine-tuning a diffusion model to support additional input conditions
|
122 |
+
<br/>
|
123 |
+
<a href="https://arxiv.org/abs/2302.05543" target="_blank">Article</a>
|
124 |
+
</p>
|
125 |
+
<p style='text-align: center; font-size: 14px;'>
|
126 |
+
Spaces creating by
|
127 |
+
<br/>
|
128 |
+
<a href="https://www.linkedin.com/in/vumichien/" target="_blank">Chien Vu</a>
|
129 |
+
<br/>
|
130 |
+
<img src='https://visitor-badge.glitch.me/badge?page_id=Canvas.ControlNet' alt='visitor badge'>
|
131 |
+
</p>
|
132 |
+
""",
|
133 |
+
unsafe_allow_html=True,
|
134 |
+
)
|
135 |
+
if choose == 'Upload':
|
136 |
+
with st.form(key='generate_form'):
|
137 |
+
upload_file = st.file_uploader("Upload image", type=["png", "jpg", "jpeg"])
|
138 |
+
prompt = st.text_input(label="Prompt", placeholder='Type your instruction')
|
139 |
+
col11, col12 = st.columns(2)
|
140 |
+
with st.expander('Advanced option', expanded=False):
|
141 |
+
col21, col22 = st.columns(2)
|
142 |
+
with col21:
|
143 |
+
image_resolution = st.slider(label="Image Resolution", min_value=256, max_value=512, value=512, step=256)
|
144 |
+
strength = st.slider(label="Control Strength", min_value=0.0, max_value=2.0, value=1.0, step=0.01)
|
145 |
+
guess_mode = st.checkbox(label='Guess Mode', value=False)
|
146 |
+
detect_resolution = st.slider(label="HED Resolution", min_value=128, max_value=1024, value=512, step=1)
|
147 |
+
ddim_steps = st.slider(label="Steps", min_value=1, max_value=100, value=20, step=1)
|
148 |
+
with col22:
|
149 |
+
scale = st.slider(label="Guidance Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1)
|
150 |
+
seed = st.number_input(label="Seed", min_value=-1, value=-1)
|
151 |
+
eta = st.number_input(label="eta (DDIM)", value=0.0)
|
152 |
+
a_prompt = st.text_input(label="Added Prompt", value='best quality, extremely detailed')
|
153 |
+
n_prompt = st.text_input(label="Negative Prompt",
|
154 |
+
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
155 |
+
# generate_button = st.button('Generate Image')
|
156 |
+
generate_button = st.form_submit_button(label='Generate Image')
|
157 |
+
|
158 |
+
if upload_file:
|
159 |
+
# file_bytes = np.asarray(bytearray(upload_file.read()), dtype=np.uint8)
|
160 |
+
# imageBGR = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
|
161 |
+
# input_image = cv2.cvtColor(imageBGR , cv2.COLOR_BGR2RGB)
|
162 |
+
input_image = np.asarray(Image.open(upload_file))
|
163 |
+
print("input_image", input_image.shape)
|
164 |
+
|
165 |
+
if generate_button:
|
166 |
+
with st.spinner(text=f"It may take up to 1 minute under high load. Generating images..."):
|
167 |
+
results = process(input_image, prompt, a_prompt, n_prompt, 1, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta)
|
168 |
+
print("input_image", input_image.shape)
|
169 |
+
print("results", results[0].shape)
|
170 |
+
H, W, C = input_image.shape
|
171 |
+
# output_image = cv2.resize(results[0], (W, H), interpolation=cv2.INTER_AREA)
|
172 |
+
col11.image(input_image, channels='RGB', width=None, clamp=False, caption='Input image')
|
173 |
+
col12.image(results[0], channels='RGB', width=None, clamp=False, caption='Generated image')
|
174 |
+
|
175 |
+
elif choose == 'Canvas':
|
176 |
+
with st.form(key='canvas_form'):
|
177 |
+
# Specify canvas parameters in application
|
178 |
+
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 3)
|
179 |
+
stroke_color = st.sidebar.color_picker("Stroke color hex: ")
|
180 |
+
bg_color = st.sidebar.color_picker("Background color hex: ", "#eee")
|
181 |
+
bg_height = st.sidebar.slider("Canvas height", min_value=256, max_value=512, value=512, step=64)
|
182 |
+
bg_width = st.sidebar.slider("Canvas width", min_value=256, max_value=512, value=512, step=64)
|
183 |
+
realtime_update = st.sidebar.checkbox("Update in realtime", True)
|
184 |
+
|
185 |
+
# Create a canvas component
|
186 |
+
col31, col32 = st.columns(2)
|
187 |
+
with col31:
|
188 |
+
canvas_result = st_canvas(
|
189 |
+
fill_color="rgba(255, 165, 0, 0.3)", # Fixed fill color with some opacity
|
190 |
+
stroke_width=stroke_width,
|
191 |
+
stroke_color=stroke_color,
|
192 |
+
background_color=bg_color,
|
193 |
+
background_image=None,
|
194 |
+
update_streamlit=realtime_update,
|
195 |
+
height=bg_height,
|
196 |
+
width=bg_width,
|
197 |
+
drawing_mode="freedraw",
|
198 |
+
point_display_radius=0,
|
199 |
+
key="canvas",
|
200 |
+
)
|
201 |
+
prompt = st.text_input(label="Prompt", placeholder='Type your instruction')
|
202 |
+
|
203 |
+
with st.expander('Advanced option', expanded=False):
|
204 |
+
col41, col42 = st.columns(2)
|
205 |
+
with col41:
|
206 |
+
image_resolution = st.slider(label="Image Resolution", min_value=256, max_value=512, value=512, step=256)
|
207 |
+
strength = st.slider(label="Control Strength", min_value=0.0, max_value=2.0, value=1.0, step=0.01)
|
208 |
+
guess_mode = st.checkbox(label='Guess Mode', value=False)
|
209 |
+
detect_resolution = st.slider(label="HED Resolution", min_value=128, max_value=1024, value=512, step=1)
|
210 |
+
ddim_steps = st.slider(label="Steps", min_value=1, max_value=100, value=20, step=1)
|
211 |
+
with col42:
|
212 |
+
scale = st.slider(label="Guidance Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1)
|
213 |
+
seed = st.number_input(label="Seed", min_value=-1, value=-1)
|
214 |
+
eta = st.number_input(label="eta (DDIM)", value=0.0)
|
215 |
+
a_prompt = st.text_input(label="Added Prompt", value='best quality, extremely detailed')
|
216 |
+
n_prompt = st.text_input(label="Negative Prompt",
|
217 |
+
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
|
218 |
+
|
219 |
+
# Do something interesting with the image data and paths
|
220 |
+
generate_button = st.form_submit_button(label='Generate Image')
|
221 |
+
if canvas_result.image_data is not None:
|
222 |
+
input_image = canvas_result.image_data
|
223 |
+
with st.spinner(text=f"It may take up to 1 minute under high load. Generating images..."):
|
224 |
+
results = process(input_image, prompt, a_prompt, n_prompt, 1, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta)
|
225 |
+
H, W, C = input_image.shape
|
226 |
+
output_image = cv2.resize(results[0], (W, H), interpolation=cv2.INTER_AREA)
|
227 |
+
col32.image(output_image, channels='RGB', width=384, clamp=True, caption='Generated image')
|
228 |
+
|
229 |
+
if __name__ == '__main__':
|
230 |
+
main()
|