File size: 5,641 Bytes
3db63ac
4b27b73
 
3db63ac
060e0a7
b29e506
 
060e0a7
b29e506
08834d7
b29e506
 
 
 
 
48f025f
1dc79bc
b29e506
d56b4d4
1dc79bc
b29e506
d56b4d4
f915926
904c6e8
a69ad45
 
23a56cb
 
d56b4d4
 
 
 
904c6e8
1dc79bc
904c6e8
 
 
 
7dab933
1dc79bc
 
 
904c6e8
68f9039
904c6e8
1dc79bc
 
a69ad45
40da08b
 
 
904c6e8
 
 
 
68f9039
40da08b
 
 
baf282d
40da08b
 
 
 
 
 
68f9039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import sys

os.system('git clone https://github.com/facebookresearch/av_hubert.git')
os.chdir('/home/user/app/av_hubert')
os.system('git submodule init')
os.system('git submodule update')
os.chdir('/home/user/app/av_hubert/fairseq')
os.system('pip install ./')
os.system('pip install scipy')
os.system('pip install sentencepiece')
os.system('pip install python_speech_features')
os.system('pip install scikit-video')
os.system('pip install transformers')
os.system('pip install gradio==3.12')
os.system('pip install numpy==1.23.3')


sys.path.append('/home/user/app/av_hubert')
# sys.path.append('/home/user/app/av_hubert/avhubert')

print(sys.path)
print(os.listdir())





import dlib, cv2, os
import numpy as np
import skvideo
import skvideo.io
from tqdm import tqdm
from av_hubert.avhubert.preparation.align_mouth import landmarks_interpolate, crop_patch, write_video_ffmpeg
from base64 import b64encode
import torch
import cv2
import tempfile
from argparse import Namespace
import av_hubert.fairseq
from av_hubert.fairseq import checkpoint_utils, options, tasks, utils
from av_hubert.fairseq.dataclass.configs import GenerationConfig
from huggingface_hub import hf_hub_download
import gradio as gr

os.chdir('/home/user/app/av_hubert/avhubert')

user_dir = "/home/user/app/av_hubert/avhubert"
utils.import_user_module(Namespace(user_dir=user_dir))
data_dir = tempfile.mkdtemp()

ckpt_path = hf_hub_download('vumichien/AV-HuBERT', 'model.pt')
face_detector_path = "/home/user/app/mmod_human_face_detector.dat"
face_predictor_path = "/home/user/app/shape_predictor_68_face_landmarks.dat"
mean_face_path = "/home/user/app/20words_mean_face.npy"
mouth_roi_path = "/home/user/app/roi.mp4"
modalities = ["video"]
gen_subset = "test"
gen_cfg = GenerationConfig(beam=20)
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
models = [model.eval().cuda() if torch.cuda.is_available() else model.eval() for model in models]
saved_cfg.task.modalities = modalities
saved_cfg.task.data = data_dir
saved_cfg.task.label_dir = data_dir
task = tasks.setup_task(saved_cfg.task)
generator = task.build_generator(models, gen_cfg)

def detect_landmark(image, detector, predictor):
    gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    face_locations  = detector(gray, 1)
    coords = None
    for (_, face_location) in enumerate(face_locations):
        if torch.cuda.is_available():
            rect = face_location.rect
        else:
            rect = face_location
        shape = predictor(gray, rect)
        coords = np.zeros((68, 2), dtype=np.int32)
        for i in range(0, 68):
            coords[i] = (shape.part(i).x, shape.part(i).y)
    return coords

def preprocess_video(input_video_path):
    if torch.cuda.is_available():
        detector = dlib.cnn_face_detection_model_v1(face_detector_path)
    else:
        detector = dlib.get_frontal_face_detector()
    
    predictor = dlib.shape_predictor(face_predictor_path)
    STD_SIZE = (256, 256)
    mean_face_landmarks = np.load(mean_face_path)
    stablePntsIDs = [33, 36, 39, 42, 45]
    videogen = skvideo.io.vread(input_video_path)
    frames = np.array([frame for frame in videogen])
    landmarks = []
    for frame in tqdm(frames):
        landmark = detect_landmark(frame, detector, predictor)
        landmarks.append(landmark)
    preprocessed_landmarks = landmarks_interpolate(landmarks)
    rois = crop_patch(input_video_path, preprocessed_landmarks, mean_face_landmarks, stablePntsIDs, STD_SIZE, 
                          window_margin=12, start_idx=48, stop_idx=68, crop_height=96, crop_width=96)
    write_video_ffmpeg(rois, mouth_roi_path, "/usr/bin/ffmpeg")
    return mouth_roi_path

def predict(process_video):
    num_frames = int(cv2.VideoCapture(process_video).get(cv2.CAP_PROP_FRAME_COUNT))
    data_dir = tempfile.mkdtemp()
    tsv_cont = ["/\n", f"test-0\t{process_video}\t{None}\t{num_frames}\t{int(16_000*num_frames/25)}\n"]
    label_cont = ["DUMMY\n"]
    with open(f"{data_dir}/test.tsv", "w") as fo:
      fo.write("".join(tsv_cont))
    with open(f"{data_dir}/test.wrd", "w") as fo:
      fo.write("".join(label_cont))
    task.load_dataset(gen_subset, task_cfg=saved_cfg.task)

    def decode_fn(x):
        dictionary = task.target_dictionary
        symbols_ignore = generator.symbols_to_strip_from_output
        symbols_ignore.add(dictionary.pad())
        return task.datasets[gen_subset].label_processors[0].decode(x, symbols_ignore)

    itr = task.get_batch_iterator(dataset=task.dataset(gen_subset)).next_epoch_itr(shuffle=False)
    sample = next(itr)
    if torch.cuda.is_available():
        sample = utils.move_to_cuda(sample)
    hypos = task.inference_step(generator, models, sample)
    ref = decode_fn(sample['target'][0].int().cpu())
    hypo = hypos[0][0]['tokens'].int().cpu()
    hypo = decode_fn(hypo)
    return hypo


# ---- Gradio Layout -----
demo = gr.Blocks()
demo.encrypt = False
text_output = gr.Textbox()
with demo:
    with gr.Row():  
        video_in = gr.Video(label="Input Video", mirror_webcam=False, interactive=True)
        video_out = gr.Video(label="Audio Visual Video", mirror_webcam=False, interactive=True)  
    with gr.Row():
        detect_landmark_btn = gr.Button("Detect landmark")
        detect_landmark_btn.click(preprocess_video, [video_in], [
            video_out])
        predict_btn = gr.Button("Predict")
        predict_btn.click(predict, [video_out], [
            text_output])
    with gr.Row():
        # video_lip = gr.Video(label="Audio Visual Video", mirror_webcam=False) 
        text_output.render()
        
        
demo.launch(debug=True)