Spaces:
Sleeping
Sleeping
import torch | |
from torch.utils import data | |
import numpy as np | |
from os.path import join as pjoin | |
import random | |
import codecs as cs | |
from tqdm import tqdm | |
class VQMotionDataset(data.Dataset): | |
def __init__(self, dataset_name, window_size = 64, unit_length = 4): | |
self.window_size = window_size | |
self.unit_length = unit_length | |
self.dataset_name = dataset_name | |
if dataset_name == 't2m': | |
self.data_root = './dataset/HumanML3D' | |
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') | |
self.text_dir = pjoin(self.data_root, 'texts') | |
self.joints_num = 22 | |
self.max_motion_length = 196 | |
self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta' | |
elif dataset_name == 'kit': | |
self.data_root = './dataset/KIT-ML' | |
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs') | |
self.text_dir = pjoin(self.data_root, 'texts') | |
self.joints_num = 21 | |
self.max_motion_length = 196 | |
self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta' | |
joints_num = self.joints_num | |
mean = np.load(pjoin(self.meta_dir, 'mean.npy')) | |
std = np.load(pjoin(self.meta_dir, 'std.npy')) | |
split_file = pjoin(self.data_root, 'train.txt') | |
self.data = [] | |
self.lengths = [] | |
id_list = [] | |
with cs.open(split_file, 'r') as f: | |
for line in f.readlines(): | |
id_list.append(line.strip()) | |
for name in tqdm(id_list): | |
try: | |
motion = np.load(pjoin(self.motion_dir, name + '.npy')) | |
if motion.shape[0] < self.window_size: | |
continue | |
self.lengths.append(motion.shape[0] - self.window_size) | |
self.data.append(motion) | |
except: | |
# Some motion may not exist in KIT dataset | |
pass | |
self.mean = mean | |
self.std = std | |
print("Total number of motions {}".format(len(self.data))) | |
def inv_transform(self, data): | |
return data * self.std + self.mean | |
def compute_sampling_prob(self) : | |
prob = np.array(self.lengths, dtype=np.float32) | |
prob /= np.sum(prob) | |
return prob | |
def __len__(self): | |
return len(self.data) | |
def __getitem__(self, item): | |
motion = self.data[item] | |
idx = random.randint(0, len(motion) - self.window_size) | |
motion = motion[idx:idx+self.window_size] | |
"Z Normalization" | |
motion = (motion - self.mean) / self.std | |
return motion | |
def DATALoader(dataset_name, | |
batch_size, | |
num_workers = 8, | |
window_size = 64, | |
unit_length = 4): | |
trainSet = VQMotionDataset(dataset_name, window_size=window_size, unit_length=unit_length) | |
prob = trainSet.compute_sampling_prob() | |
sampler = torch.utils.data.WeightedRandomSampler(prob, num_samples = len(trainSet) * 1000, replacement=True) | |
train_loader = torch.utils.data.DataLoader(trainSet, | |
batch_size, | |
shuffle=True, | |
#sampler=sampler, | |
num_workers=num_workers, | |
#collate_fn=collate_fn, | |
drop_last = True) | |
return train_loader | |
def cycle(iterable): | |
while True: | |
for x in iterable: | |
yield x | |