Spaces:
Running
on
T4
Running
on
T4
import os | |
import json | |
import torch | |
import torch.optim as optim | |
from torch.utils.tensorboard import SummaryWriter | |
import models.vqvae as vqvae | |
import utils.losses as losses | |
import options.option_vq as option_vq | |
import utils.utils_model as utils_model | |
from dataset import dataset_VQ, dataset_TM_eval | |
import utils.eval_trans as eval_trans | |
from options.get_eval_option import get_opt | |
from models.evaluator_wrapper import EvaluatorModelWrapper | |
import warnings | |
warnings.filterwarnings('ignore') | |
from utils.word_vectorizer import WordVectorizer | |
def update_lr_warm_up(optimizer, nb_iter, warm_up_iter, lr): | |
current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1) | |
for param_group in optimizer.param_groups: | |
param_group["lr"] = current_lr | |
return optimizer, current_lr | |
##### ---- Exp dirs ---- ##### | |
args = option_vq.get_args_parser() | |
torch.manual_seed(args.seed) | |
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}') | |
os.makedirs(args.out_dir, exist_ok = True) | |
##### ---- Logger ---- ##### | |
logger = utils_model.get_logger(args.out_dir) | |
writer = SummaryWriter(args.out_dir) | |
logger.info(json.dumps(vars(args), indent=4, sort_keys=True)) | |
w_vectorizer = WordVectorizer('./glove', 'our_vab') | |
if args.dataname == 'kit' : | |
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' | |
args.nb_joints = 21 | |
else : | |
dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt' | |
args.nb_joints = 22 | |
logger.info(f'Training on {args.dataname}, motions are with {args.nb_joints} joints') | |
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda')) | |
eval_wrapper = EvaluatorModelWrapper(wrapper_opt) | |
##### ---- Dataloader ---- ##### | |
train_loader = dataset_VQ.DATALoader(args.dataname, | |
args.batch_size, | |
window_size=args.window_size, | |
unit_length=2**args.down_t) | |
train_loader_iter = dataset_VQ.cycle(train_loader) | |
val_loader = dataset_TM_eval.DATALoader(args.dataname, False, | |
32, | |
w_vectorizer, | |
unit_length=2**args.down_t) | |
##### ---- Network ---- ##### | |
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers | |
args.nb_code, | |
args.code_dim, | |
args.output_emb_width, | |
args.down_t, | |
args.stride_t, | |
args.width, | |
args.depth, | |
args.dilation_growth_rate, | |
args.vq_act, | |
args.vq_norm) | |
if args.resume_pth : | |
logger.info('loading checkpoint from {}'.format(args.resume_pth)) | |
ckpt = torch.load(args.resume_pth, map_location='cpu') | |
net.load_state_dict(ckpt['net'], strict=True) | |
net.train() | |
net.cuda() | |
##### ---- Optimizer & Scheduler ---- ##### | |
optimizer = optim.AdamW(net.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay) | |
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma) | |
Loss = losses.ReConsLoss(args.recons_loss, args.nb_joints) | |
##### ------ warm-up ------- ##### | |
avg_recons, avg_perplexity, avg_commit = 0., 0., 0. | |
for nb_iter in range(1, args.warm_up_iter): | |
optimizer, current_lr = update_lr_warm_up(optimizer, nb_iter, args.warm_up_iter, args.lr) | |
gt_motion = next(train_loader_iter) | |
gt_motion = gt_motion.cuda().float() # (bs, 64, dim) | |
pred_motion, loss_commit, perplexity = net(gt_motion) | |
loss_motion = Loss(pred_motion, gt_motion) | |
loss_vel = Loss.forward_vel(pred_motion, gt_motion) | |
loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
avg_recons += loss_motion.item() | |
avg_perplexity += perplexity.item() | |
avg_commit += loss_commit.item() | |
if nb_iter % args.print_iter == 0 : | |
avg_recons /= args.print_iter | |
avg_perplexity /= args.print_iter | |
avg_commit /= args.print_iter | |
logger.info(f"Warmup. Iter {nb_iter} : lr {current_lr:.5f} \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}") | |
avg_recons, avg_perplexity, avg_commit = 0., 0., 0. | |
##### ---- Training ---- ##### | |
avg_recons, avg_perplexity, avg_commit = 0., 0., 0. | |
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper) | |
for nb_iter in range(1, args.total_iter + 1): | |
gt_motion = next(train_loader_iter) | |
gt_motion = gt_motion.cuda().float() # bs, nb_joints, joints_dim, seq_len | |
pred_motion, loss_commit, perplexity = net(gt_motion) | |
loss_motion = Loss(pred_motion, gt_motion) | |
loss_vel = Loss.forward_vel(pred_motion, gt_motion) | |
loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
scheduler.step() | |
avg_recons += loss_motion.item() | |
avg_perplexity += perplexity.item() | |
avg_commit += loss_commit.item() | |
if nb_iter % args.print_iter == 0 : | |
avg_recons /= args.print_iter | |
avg_perplexity /= args.print_iter | |
avg_commit /= args.print_iter | |
writer.add_scalar('./Train/L1', avg_recons, nb_iter) | |
writer.add_scalar('./Train/PPL', avg_perplexity, nb_iter) | |
writer.add_scalar('./Train/Commit', avg_commit, nb_iter) | |
logger.info(f"Train. Iter {nb_iter} : \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}") | |
avg_recons, avg_perplexity, avg_commit = 0., 0., 0., | |
if nb_iter % args.eval_iter==0 : | |
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, eval_wrapper=eval_wrapper) | |