Spaces:
Running
on
T4
Running
on
T4
import torch | |
from os.path import join as pjoin | |
import numpy as np | |
from models.modules import MovementConvEncoder, TextEncoderBiGRUCo, MotionEncoderBiGRUCo | |
from utils.word_vectorizer import POS_enumerator | |
def build_models(opt): | |
movement_enc = MovementConvEncoder(opt.dim_pose-4, opt.dim_movement_enc_hidden, opt.dim_movement_latent) | |
text_enc = TextEncoderBiGRUCo(word_size=opt.dim_word, | |
pos_size=opt.dim_pos_ohot, | |
hidden_size=opt.dim_text_hidden, | |
output_size=opt.dim_coemb_hidden, | |
device=opt.device) | |
motion_enc = MotionEncoderBiGRUCo(input_size=opt.dim_movement_latent, | |
hidden_size=opt.dim_motion_hidden, | |
output_size=opt.dim_coemb_hidden, | |
device=opt.device) | |
checkpoint = torch.load(pjoin(opt.checkpoints_dir, opt.dataset_name, 'text_mot_match', 'model', 'finest.tar'), | |
map_location=opt.device) | |
movement_enc.load_state_dict(checkpoint['movement_encoder']) | |
text_enc.load_state_dict(checkpoint['text_encoder']) | |
motion_enc.load_state_dict(checkpoint['motion_encoder']) | |
print('Loading Evaluation Model Wrapper (Epoch %d) Completed!!' % (checkpoint['epoch'])) | |
return text_enc, motion_enc, movement_enc | |
class EvaluatorModelWrapper(object): | |
def __init__(self, opt): | |
if opt.dataset_name == 't2m': | |
opt.dim_pose = 263 | |
elif opt.dataset_name == 'kit': | |
opt.dim_pose = 251 | |
else: | |
raise KeyError('Dataset not Recognized!!!') | |
opt.dim_word = 300 | |
opt.max_motion_length = 196 | |
opt.dim_pos_ohot = len(POS_enumerator) | |
opt.dim_motion_hidden = 1024 | |
opt.max_text_len = 20 | |
opt.dim_text_hidden = 512 | |
opt.dim_coemb_hidden = 512 | |
# print(opt) | |
self.text_encoder, self.motion_encoder, self.movement_encoder = build_models(opt) | |
self.opt = opt | |
self.device = opt.device | |
self.text_encoder.to(opt.device) | |
self.motion_encoder.to(opt.device) | |
self.movement_encoder.to(opt.device) | |
self.text_encoder.eval() | |
self.motion_encoder.eval() | |
self.movement_encoder.eval() | |
# Please note that the results does not following the order of inputs | |
def get_co_embeddings(self, word_embs, pos_ohot, cap_lens, motions, m_lens): | |
with torch.no_grad(): | |
word_embs = word_embs.detach().to(self.device).float() | |
pos_ohot = pos_ohot.detach().to(self.device).float() | |
motions = motions.detach().to(self.device).float() | |
'''Movement Encoding''' | |
movements = self.movement_encoder(motions[..., :-4]).detach() | |
m_lens = m_lens // self.opt.unit_length | |
motion_embedding = self.motion_encoder(movements, m_lens) | |
'''Text Encoding''' | |
text_embedding = self.text_encoder(word_embs, pos_ohot, cap_lens) | |
return text_embedding, motion_embedding | |
# Please note that the results does not following the order of inputs | |
def get_motion_embeddings(self, motions, m_lens): | |
with torch.no_grad(): | |
motions = motions.detach().to(self.device).float() | |
align_idx = np.argsort(m_lens.data.tolist())[::-1].copy() | |
motions = motions[align_idx] | |
m_lens = m_lens[align_idx] | |
'''Movement Encoding''' | |
movements = self.movement_encoder(motions[..., :-4]).detach() | |
m_lens = m_lens // self.opt.unit_length | |
motion_embedding = self.motion_encoder(movements, m_lens) | |
return motion_embedding | |