Spaces:
Running
on
T4
Running
on
T4
File size: 6,356 Bytes
4275cae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
import json
import torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import models.vqvae as vqvae
import utils.losses as losses
import options.option_vq as option_vq
import utils.utils_model as utils_model
from dataset import dataset_VQ, dataset_TM_eval
import utils.eval_trans as eval_trans
from options.get_eval_option import get_opt
from models.evaluator_wrapper import EvaluatorModelWrapper
import warnings
warnings.filterwarnings('ignore')
from utils.word_vectorizer import WordVectorizer
def update_lr_warm_up(optimizer, nb_iter, warm_up_iter, lr):
current_lr = lr * (nb_iter + 1) / (warm_up_iter + 1)
for param_group in optimizer.param_groups:
param_group["lr"] = current_lr
return optimizer, current_lr
##### ---- Exp dirs ---- #####
args = option_vq.get_args_parser()
torch.manual_seed(args.seed)
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
os.makedirs(args.out_dir, exist_ok = True)
##### ---- Logger ---- #####
logger = utils_model.get_logger(args.out_dir)
writer = SummaryWriter(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
w_vectorizer = WordVectorizer('./glove', 'our_vab')
if args.dataname == 'kit' :
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt'
args.nb_joints = 21
else :
dataset_opt_path = 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
args.nb_joints = 22
logger.info(f'Training on {args.dataname}, motions are with {args.nb_joints} joints')
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
##### ---- Dataloader ---- #####
train_loader = dataset_VQ.DATALoader(args.dataname,
args.batch_size,
window_size=args.window_size,
unit_length=2**args.down_t)
train_loader_iter = dataset_VQ.cycle(train_loader)
val_loader = dataset_TM_eval.DATALoader(args.dataname, False,
32,
w_vectorizer,
unit_length=2**args.down_t)
##### ---- Network ---- #####
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
args.nb_code,
args.code_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate,
args.vq_act,
args.vq_norm)
if args.resume_pth :
logger.info('loading checkpoint from {}'.format(args.resume_pth))
ckpt = torch.load(args.resume_pth, map_location='cpu')
net.load_state_dict(ckpt['net'], strict=True)
net.train()
net.cuda()
##### ---- Optimizer & Scheduler ---- #####
optimizer = optim.AdamW(net.parameters(), lr=args.lr, betas=(0.9, 0.99), weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_scheduler, gamma=args.gamma)
Loss = losses.ReConsLoss(args.recons_loss, args.nb_joints)
##### ------ warm-up ------- #####
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
for nb_iter in range(1, args.warm_up_iter):
optimizer, current_lr = update_lr_warm_up(optimizer, nb_iter, args.warm_up_iter, args.lr)
gt_motion = next(train_loader_iter)
gt_motion = gt_motion.cuda().float() # (bs, 64, dim)
pred_motion, loss_commit, perplexity = net(gt_motion)
loss_motion = Loss(pred_motion, gt_motion)
loss_vel = Loss.forward_vel(pred_motion, gt_motion)
loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
optimizer.zero_grad()
loss.backward()
optimizer.step()
avg_recons += loss_motion.item()
avg_perplexity += perplexity.item()
avg_commit += loss_commit.item()
if nb_iter % args.print_iter == 0 :
avg_recons /= args.print_iter
avg_perplexity /= args.print_iter
avg_commit /= args.print_iter
logger.info(f"Warmup. Iter {nb_iter} : lr {current_lr:.5f} \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}")
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
##### ---- Training ---- #####
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, 0, best_fid=1000, best_iter=0, best_div=100, best_top1=0, best_top2=0, best_top3=0, best_matching=100, eval_wrapper=eval_wrapper)
for nb_iter in range(1, args.total_iter + 1):
gt_motion = next(train_loader_iter)
gt_motion = gt_motion.cuda().float() # bs, nb_joints, joints_dim, seq_len
pred_motion, loss_commit, perplexity = net(gt_motion)
loss_motion = Loss(pred_motion, gt_motion)
loss_vel = Loss.forward_vel(pred_motion, gt_motion)
loss = loss_motion + args.commit * loss_commit + args.loss_vel * loss_vel
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
avg_recons += loss_motion.item()
avg_perplexity += perplexity.item()
avg_commit += loss_commit.item()
if nb_iter % args.print_iter == 0 :
avg_recons /= args.print_iter
avg_perplexity /= args.print_iter
avg_commit /= args.print_iter
writer.add_scalar('./Train/L1', avg_recons, nb_iter)
writer.add_scalar('./Train/PPL', avg_perplexity, nb_iter)
writer.add_scalar('./Train/Commit', avg_commit, nb_iter)
logger.info(f"Train. Iter {nb_iter} : \t Commit. {avg_commit:.5f} \t PPL. {avg_perplexity:.2f} \t Recons. {avg_recons:.5f}")
avg_recons, avg_perplexity, avg_commit = 0., 0., 0.,
if nb_iter % args.eval_iter==0 :
best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_vqvae(args.out_dir, val_loader, net, logger, writer, nb_iter, best_fid, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, eval_wrapper=eval_wrapper)
|