Upload 2 files
Browse files- app.py +44 -15
- requirements.txt +1 -0
app.py
CHANGED
@@ -6,26 +6,55 @@ import gradio as gr
|
|
6 |
import spaces
|
7 |
import torch
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
|
9 |
|
|
|
10 |
MAX_MAX_NEW_TOKENS = 2048
|
11 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
12 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
13 |
ACCESS_TOKEN = os.getenv("HF_TOKEN", "")
|
14 |
|
15 |
-
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
model = AutoModelForCausalLM.from_pretrained(
|
18 |
model_id,
|
19 |
torch_dtype=torch.float16,
|
20 |
-
device_map="auto",
|
21 |
trust_remote_code=True,
|
22 |
-
|
|
|
|
|
|
|
23 |
tokenizer = AutoTokenizer.from_pretrained(
|
24 |
model_id,
|
25 |
trust_remote_code=True,
|
26 |
-
token=ACCESS_TOKEN
|
|
|
27 |
tokenizer.use_default_system_prompt = False
|
28 |
|
|
|
|
|
29 |
|
30 |
@spaces.GPU
|
31 |
def generate(
|
@@ -35,45 +64,45 @@ def generate(
|
|
35 |
temperature: float = 0.01,
|
36 |
top_p: float = 1.00,
|
37 |
) -> Iterator[str]:
|
|
|
38 |
conversation = []
|
39 |
if system_prompt:
|
40 |
conversation.append({"role": "system", "content": system_prompt})
|
41 |
conversation.append({"role": "user", "content": message})
|
42 |
|
|
|
43 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
44 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
45 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
46 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
47 |
input_ids = input_ids.to(model.device)
|
48 |
|
49 |
-
|
50 |
-
terminators = [
|
51 |
-
tokenizer.eos_token_id,
|
52 |
-
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
53 |
-
]
|
54 |
-
'''
|
55 |
-
|
56 |
streamer = TextIteratorStreamer(tokenizer, timeout=600.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
57 |
generate_kwargs = dict(
|
58 |
{"input_ids": input_ids},
|
59 |
streamer=streamer,
|
60 |
max_new_tokens=max_new_tokens,
|
61 |
-
#eos_token_id=terminators,
|
62 |
do_sample=True,
|
63 |
top_p=top_p,
|
64 |
temperature=temperature,
|
65 |
num_beams=1,
|
66 |
-
pad_token_id=tokenizer.eos_token_id,
|
67 |
)
|
|
|
|
|
68 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
69 |
t.start()
|
70 |
|
|
|
71 |
outputs = []
|
72 |
for text in streamer:
|
73 |
outputs.append(text)
|
74 |
yield "".join(outputs)
|
75 |
|
76 |
-
|
77 |
chat_interface = gr.Interface(
|
78 |
fn=generate,
|
79 |
inputs=[
|
@@ -104,7 +133,7 @@ chat_interface = gr.Interface(
|
|
104 |
value=1.0,
|
105 |
),
|
106 |
],
|
107 |
-
title="Model testing - Qwen/Qwen2.5-Coder-
|
108 |
description="Provide system settings and a prompt to interact with the model.",
|
109 |
)
|
110 |
|
|
|
6 |
import spaces
|
7 |
import torch
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
+
import deepspeed
|
10 |
|
11 |
+
# Configurable constants
|
12 |
MAX_MAX_NEW_TOKENS = 2048
|
13 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
14 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
15 |
ACCESS_TOKEN = os.getenv("HF_TOKEN", "")
|
16 |
|
17 |
+
# Model ID for Qwen model
|
18 |
+
model_id = "Qwen/Qwen2.5-Coder-32B-Instruct-GPTQ-Int8"
|
19 |
|
20 |
+
# DeepSpeed configuration
|
21 |
+
deepspeed_config = {
|
22 |
+
"train_batch_size": 1,
|
23 |
+
"fp16": {
|
24 |
+
"enabled": True
|
25 |
+
},
|
26 |
+
"zero_optimization": {
|
27 |
+
"stage": 3, # Enable ZeRO stage 3 for maximum memory efficiency
|
28 |
+
"offload_param": {
|
29 |
+
"device": "cpu",
|
30 |
+
"pin_memory": True
|
31 |
+
},
|
32 |
+
"offload_optimizer": {
|
33 |
+
"device": "cpu",
|
34 |
+
"pin_memory": True
|
35 |
+
}
|
36 |
+
},
|
37 |
+
"gradient_checkpointing": True # Enables gradient checkpointing for further memory savings
|
38 |
+
}
|
39 |
+
|
40 |
+
# Load model with DeepSpeed
|
41 |
model = AutoModelForCausalLM.from_pretrained(
|
42 |
model_id,
|
43 |
torch_dtype=torch.float16,
|
|
|
44 |
trust_remote_code=True,
|
45 |
+
device_map="auto", # Use device mapping with DeepSpeed
|
46 |
+
load_in_8bit=True, # Use 8-bit quantization
|
47 |
+
token=ACCESS_TOKEN
|
48 |
+
)
|
49 |
tokenizer = AutoTokenizer.from_pretrained(
|
50 |
model_id,
|
51 |
trust_remote_code=True,
|
52 |
+
token=ACCESS_TOKEN
|
53 |
+
)
|
54 |
tokenizer.use_default_system_prompt = False
|
55 |
|
56 |
+
# Initialize DeepSpeed for the loaded model
|
57 |
+
model = deepspeed.init_inference(model, config=deepspeed_config, mp_size=1)
|
58 |
|
59 |
@spaces.GPU
|
60 |
def generate(
|
|
|
64 |
temperature: float = 0.01,
|
65 |
top_p: float = 1.00,
|
66 |
) -> Iterator[str]:
|
67 |
+
# Define the conversation prompt format
|
68 |
conversation = []
|
69 |
if system_prompt:
|
70 |
conversation.append({"role": "system", "content": system_prompt})
|
71 |
conversation.append({"role": "user", "content": message})
|
72 |
|
73 |
+
# Tokenize the input with the conversation template
|
74 |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
75 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
76 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
77 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
78 |
input_ids = input_ids.to(model.device)
|
79 |
|
80 |
+
# Set up the text streaming options for output
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
streamer = TextIteratorStreamer(tokenizer, timeout=600.0, skip_prompt=True, skip_special_tokens=True)
|
82 |
+
|
83 |
+
# Set up generation parameters
|
84 |
generate_kwargs = dict(
|
85 |
{"input_ids": input_ids},
|
86 |
streamer=streamer,
|
87 |
max_new_tokens=max_new_tokens,
|
|
|
88 |
do_sample=True,
|
89 |
top_p=top_p,
|
90 |
temperature=temperature,
|
91 |
num_beams=1,
|
92 |
+
pad_token_id=tokenizer.eos_token_id,
|
93 |
)
|
94 |
+
|
95 |
+
# Run generation in a separate thread for streaming
|
96 |
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
97 |
t.start()
|
98 |
|
99 |
+
# Stream the output text
|
100 |
outputs = []
|
101 |
for text in streamer:
|
102 |
outputs.append(text)
|
103 |
yield "".join(outputs)
|
104 |
|
105 |
+
# Gradio interface setup
|
106 |
chat_interface = gr.Interface(
|
107 |
fn=generate,
|
108 |
inputs=[
|
|
|
133 |
value=1.0,
|
134 |
),
|
135 |
],
|
136 |
+
title="Model testing - Qwen/Qwen2.5-Coder-32B-Instruct-GPTQ-Int8",
|
137 |
description="Provide system settings and a prompt to interact with the model.",
|
138 |
)
|
139 |
|
requirements.txt
CHANGED
@@ -246,3 +246,4 @@ einops
|
|
246 |
pytest
|
247 |
gguf>=0.10.0
|
248 |
autoawq
|
|
|
|
246 |
pytest
|
247 |
gguf>=0.10.0
|
248 |
autoawq
|
249 |
+
deepspeed
|