|
import os |
|
from threading import Thread |
|
from typing import Iterator |
|
|
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
|
|
MAX_MAX_NEW_TOKENS = 2048 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) |
|
ACCESS_TOKEN = os.getenv("HF_TOKEN", "") |
|
|
|
model_id = "Qwen/Qwen2.5-Coder-32B-Instruct-GPTQ-Int8" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
token=ACCESS_TOKEN) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_id, |
|
trust_remote_code=True, |
|
token=ACCESS_TOKEN) |
|
tokenizer.use_default_system_prompt = False |
|
|
|
|
|
@spaces.GPU |
|
def generate( |
|
message: str, |
|
system_prompt: str, |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.01, |
|
top_p: float = 1.00, |
|
) -> Iterator[str]: |
|
conversation = [] |
|
if system_prompt: |
|
conversation.append({"role": "system", "content": system_prompt}) |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") |
|
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: |
|
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
input_ids = input_ids.to(model.device) |
|
|
|
''' |
|
terminators = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
''' |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=600.0, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
{"input_ids": input_ids}, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
|
|
do_sample=True, |
|
top_p=top_p, |
|
temperature=temperature, |
|
num_beams=1, |
|
pad_token_id=tokenizer.eos_token_id, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
|
|
chat_interface = gr.Interface( |
|
fn=generate, |
|
inputs=[ |
|
gr.Textbox(lines=2, placeholder="Prompt", label="Prompt"), |
|
], |
|
outputs="text", |
|
additional_inputs=[ |
|
gr.Textbox(label="System prompt", lines=6), |
|
gr.Slider( |
|
label="Max new tokens", |
|
minimum=1, |
|
maximum=MAX_MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
minimum=0.1, |
|
maximum=4.0, |
|
step=0.01, |
|
value=0.01, |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
minimum=0.05, |
|
maximum=1.0, |
|
step=0.01, |
|
value=1.0, |
|
), |
|
], |
|
title="Model testing - Qwen/Qwen2.5-Coder-32B-Instruct-GPTQ-Int8", |
|
description="Provide system settings and a prompt to interact with the model.", |
|
) |
|
|
|
chat_interface.queue(max_size=20).launch() |
|
|