Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- .gitattributes +1 -0
- White-Stride-Red-68.csv +3 -0
- app.py +99 -0
- requirements.txt +5 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
White-Stride-Red-68.csv filter=lfs diff=lfs merge=lfs -text
|
White-Stride-Red-68.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6020f6eae629050bf0c90ad99e6d4e0f338ce72add1a4aaaf2c27da598bd48cc
|
3 |
+
size 15401258
|
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Step 1: Load the CSV file
|
8 |
+
df = pd.read_csv('./White-Stride-Red-68.csv')
|
9 |
+
|
10 |
+
# Step 2: Filter out rows where the 'detail_โครงการ' column is NaN or an empty string
|
11 |
+
text_column = 'detail_โครงการ'
|
12 |
+
df_filtered = df[df[text_column].notna() & df[text_column].str.strip().ne('')]
|
13 |
+
|
14 |
+
# Reset index to ensure we have a unique identifier for each row
|
15 |
+
df_filtered = df_filtered.reset_index() # 'index' becomes a column now
|
16 |
+
|
17 |
+
# Step 3: Extract the text column for embeddings
|
18 |
+
texts = df_filtered[text_column].astype(str).tolist()
|
19 |
+
|
20 |
+
# Keep the entire DataFrame rows as a list of dictionaries
|
21 |
+
rows = df_filtered.to_dict('records')
|
22 |
+
|
23 |
+
# **New Step**: Split texts into chunks of up to 500 characters
|
24 |
+
chunks = []
|
25 |
+
chunk_rows = []
|
26 |
+
|
27 |
+
for idx, text in enumerate(texts):
|
28 |
+
# Split text into chunks of up to 500 characters
|
29 |
+
text_chunks = [text[i:i+500] for i in range(0, len(text), 500)]
|
30 |
+
# For each chunk, store the chunk and its corresponding row
|
31 |
+
for chunk in text_chunks:
|
32 |
+
chunks.append(chunk)
|
33 |
+
chunk_rows.append(rows[idx])
|
34 |
+
|
35 |
+
# Step 4: Load the pre-trained model
|
36 |
+
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
37 |
+
|
38 |
+
# Step 5: Generate embeddings for all text chunks
|
39 |
+
embeddings = model.encode(chunks, show_progress_bar=True)
|
40 |
+
|
41 |
+
# Step 6: Define the semantic search function
|
42 |
+
def semantic_search(query, embeddings, chunks, chunk_rows, top_n=50):
|
43 |
+
# Generate embedding for the query
|
44 |
+
query_embedding = model.encode([query])
|
45 |
+
|
46 |
+
# Compute cosine similarities
|
47 |
+
similarities = cosine_similarity(query_embedding, embeddings)[0]
|
48 |
+
|
49 |
+
# Get the indices of the chunks sorted by similarity
|
50 |
+
sorted_indices = np.argsort(similarities)[::-1]
|
51 |
+
|
52 |
+
# Collect top_n unique results based on the original row
|
53 |
+
results = []
|
54 |
+
seen_row_ids = set()
|
55 |
+
for idx in sorted_indices:
|
56 |
+
row = chunk_rows[idx]
|
57 |
+
row_id = row['index'] # Unique identifier for the row
|
58 |
+
if row_id not in seen_row_ids:
|
59 |
+
seen_row_ids.add(row_id)
|
60 |
+
results.append((row, similarities[idx]))
|
61 |
+
if len(results) >= top_n:
|
62 |
+
break
|
63 |
+
return results
|
64 |
+
|
65 |
+
# Step 7: Create the Gradio interface
|
66 |
+
def search_interface(query):
|
67 |
+
# Perform the search
|
68 |
+
results = semantic_search(query, embeddings, chunks, chunk_rows)
|
69 |
+
|
70 |
+
# Specify the columns to display
|
71 |
+
columns_to_display = ['ชื่อกระทรวง', 'งบประมาณปี68', 'ชื่อสำนักงาน', 'งบประมาณปี68_สำนักงาน', 'ชื่อโครงการ', 'งบประมาณ_โครงการ']
|
72 |
+
|
73 |
+
# Prepare the output
|
74 |
+
output = ""
|
75 |
+
for row, score in results:
|
76 |
+
output += f"**Score:** {score:.4f}\n\n"
|
77 |
+
|
78 |
+
# Display only specified columns and skip NaNs
|
79 |
+
for key, value in row.items():
|
80 |
+
if key in columns_to_display and not pd.isna(value):
|
81 |
+
output += f"**{key}:** {value}\n\n"
|
82 |
+
|
83 |
+
# Display 'detail_โครงการ' if 'ชื่อโครงการ' or 'งบประมาณ_โครงการ' is NaN
|
84 |
+
if pd.isna(row.get('ชื่อโครงการ')) or pd.isna(row.get('งบประมาณ_โครงการ')):
|
85 |
+
output += f"**detail_โครงการ:** {row.get('detail_โครงการ')}\n\n"
|
86 |
+
output += "---\n\n"
|
87 |
+
|
88 |
+
return output
|
89 |
+
|
90 |
+
iface = gr.Interface(
|
91 |
+
fn=search_interface,
|
92 |
+
inputs=gr.Textbox(lines=2, placeholder='Enter your search query here...'),
|
93 |
+
outputs="markdown",
|
94 |
+
title="Semantic Search Application",
|
95 |
+
description="Enter a search query to find the most relevant entries from the dataset.",
|
96 |
+
)
|
97 |
+
|
98 |
+
if __name__ == "__main__":
|
99 |
+
iface.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
numpy
|
3 |
+
sentence-transformers
|
4 |
+
scikit-learn
|
5 |
+
gradio
|