Spaces:
Running
Running
younes21000
commited on
Commit
•
7e7b0c1
1
Parent(s):
8fd23af
Delete app.py
Browse files
app.py
DELETED
@@ -1,290 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
import whisper
|
4 |
-
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
5 |
-
from docx import Document
|
6 |
-
from reportlab.pdfgen import canvas
|
7 |
-
from reportlab.pdfbase.ttfonts import TTFont
|
8 |
-
from reportlab.pdfbase import pdfmetrics
|
9 |
-
from reportlab.lib.pagesizes import A4
|
10 |
-
import arabic_reshaper
|
11 |
-
from bidi.algorithm import get_display
|
12 |
-
from pptx import Presentation
|
13 |
-
import subprocess
|
14 |
-
import shlex
|
15 |
-
import yt_dlp
|
16 |
-
from selenium import webdriver
|
17 |
-
from selenium.webdriver.common.by import By
|
18 |
-
from selenium.webdriver.chrome.service import Service as ChromeService
|
19 |
-
from webdriver_manager.chrome import ChromeDriverManager
|
20 |
-
from selenium.webdriver.support.ui import WebDriverWait
|
21 |
-
from selenium.webdriver.support import expected_conditions as EC
|
22 |
-
import time
|
23 |
-
|
24 |
-
# Load the Whisper model (smaller model for faster transcription)
|
25 |
-
model = whisper.load_model("tiny")
|
26 |
-
|
27 |
-
# Load M2M100 translation model for different languages
|
28 |
-
def load_translation_model(target_language):
|
29 |
-
lang_codes = {
|
30 |
-
"fa": "fa", # Persian (Farsi)
|
31 |
-
"es": "es", # Spanish
|
32 |
-
"fr": "fr", # French
|
33 |
-
"de": "de", # German
|
34 |
-
"it": "it", # Italian
|
35 |
-
"pt": "pt", # Portuguese
|
36 |
-
}
|
37 |
-
target_lang_code = lang_codes.get(target_language)
|
38 |
-
if not target_lang_code:
|
39 |
-
raise ValueError(f"Translation model for {target_language} not supported")
|
40 |
-
|
41 |
-
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
|
42 |
-
translation_model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
|
43 |
-
|
44 |
-
tokenizer.src_lang = "en"
|
45 |
-
tokenizer.tgt_lang = target_lang_code
|
46 |
-
|
47 |
-
return tokenizer, translation_model
|
48 |
-
|
49 |
-
def translate_text(text, tokenizer, model):
|
50 |
-
try:
|
51 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
52 |
-
translated = model.generate(**inputs, forced_bos_token_id=tokenizer.get_lang_id(tokenizer.tgt_lang))
|
53 |
-
return tokenizer.decode(translated[0], skip_special_tokens=True)
|
54 |
-
except Exception as e:
|
55 |
-
raise RuntimeError(f"Error during translation: {e}")
|
56 |
-
|
57 |
-
# Helper function to format timestamps in SRT format
|
58 |
-
def format_timestamp(seconds):
|
59 |
-
milliseconds = int((seconds % 1) * 1000)
|
60 |
-
seconds = int(seconds)
|
61 |
-
hours = seconds // 3600
|
62 |
-
minutes = (seconds % 3600) // 60
|
63 |
-
seconds = seconds % 60
|
64 |
-
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
|
65 |
-
|
66 |
-
def write_srt(transcription, output_file, tokenizer=None, translation_model=None):
|
67 |
-
with open(output_file, "w") as f:
|
68 |
-
for i, segment in enumerate(transcription['segments']):
|
69 |
-
start = segment['start']
|
70 |
-
end = segment['end']
|
71 |
-
text = segment['text']
|
72 |
-
|
73 |
-
if translation_model:
|
74 |
-
text = translate_text(text, tokenizer, translation_model)
|
75 |
-
|
76 |
-
start_time = format_timestamp(start)
|
77 |
-
end_time = format_timestamp(end)
|
78 |
-
|
79 |
-
f.write(f"{i + 1}\n")
|
80 |
-
f.write(f"{start_time} --> {end_time}\n")
|
81 |
-
f.write(f"{text.strip()}\n\n")
|
82 |
-
|
83 |
-
def embed_hardsub_in_video(video_file, srt_file, output_video):
|
84 |
-
command = f'ffmpeg -i "{video_file}" -vf "subtitles=\'{srt_file}\'" -c:v libx264 -crf 23 -preset medium "{output_video}"'
|
85 |
-
try:
|
86 |
-
process = subprocess.run(shlex.split(command), capture_output=True, text=True, timeout=300)
|
87 |
-
if process.returncode != 0:
|
88 |
-
raise RuntimeError(f"ffmpeg error: {process.stderr}")
|
89 |
-
except subprocess.TimeoutExpired:
|
90 |
-
raise RuntimeError("ffmpeg process timed out.")
|
91 |
-
except Exception as e:
|
92 |
-
raise RuntimeError(f"Error running ffmpeg: {e}")
|
93 |
-
|
94 |
-
def write_word(transcription, output_file, tokenizer=None, translation_model=None, target_language=None):
|
95 |
-
doc = Document()
|
96 |
-
rtl = target_language == "fa"
|
97 |
-
for i, segment in enumerate(transcription['segments']):
|
98 |
-
text = segment['text']
|
99 |
-
if translation_model:
|
100 |
-
text = translate_text(text, tokenizer, translation_model)
|
101 |
-
para = doc.add_paragraph(f"{i + 1}. {text.strip()}")
|
102 |
-
if rtl:
|
103 |
-
para.paragraph_format.right_to_left = True
|
104 |
-
doc.save(output_file)
|
105 |
-
|
106 |
-
def reverse_text_for_rtl(text):
|
107 |
-
return ' '.join([word[::-1] for word in text.split()])
|
108 |
-
|
109 |
-
def write_pdf(transcription, output_file, tokenizer=None, translation_model=None):
|
110 |
-
c = canvas.Canvas(output_file, pagesize=A4)
|
111 |
-
app_dir = os.path.dirname(os.path.abspath(__file__))
|
112 |
-
nazanin_font_path = os.path.join(app_dir, 'B-NAZANIN.TTF')
|
113 |
-
arial_font_path = os.path.join(app_dir, 'Arial.ttf')
|
114 |
-
|
115 |
-
if os.path.exists(nazanin_font_path):
|
116 |
-
try:
|
117 |
-
pdfmetrics.registerFont(TTFont('B-Nazanin', nazanin_font_path))
|
118 |
-
except Exception as e:
|
119 |
-
raise RuntimeError(f"Error registering B-Nazanin font: {e}.")
|
120 |
-
else:
|
121 |
-
raise FileNotFoundError(f"B-Nazanin font file not found at {nazanin_font_path}. Please ensure it is available.")
|
122 |
-
|
123 |
-
if os.path.exists(arial_font_path):
|
124 |
-
try:
|
125 |
-
pdfmetrics.registerFont(TTFont('Arial', arial_font_path))
|
126 |
-
except Exception as e:
|
127 |
-
raise RuntimeError(f"Error registering Arial font: {e}.")
|
128 |
-
else:
|
129 |
-
raise FileNotFoundError(f"Arial font file not found at {arial_font_path}. Please ensure it is available.")
|
130 |
-
|
131 |
-
y_position = A4[1] - 50
|
132 |
-
line_height = 20
|
133 |
-
|
134 |
-
for i, segment in enumerate(transcription['segments']):
|
135 |
-
text = segment['text']
|
136 |
-
|
137 |
-
if translation_model:
|
138 |
-
text = translate_text(text, tokenizer, translation_model)
|
139 |
-
|
140 |
-
line = f"{i + 1}. {text.strip()}"
|
141 |
-
|
142 |
-
target_language = None
|
143 |
-
if translation_model:
|
144 |
-
target_language = tokenizer.tgt_lang
|
145 |
-
|
146 |
-
if target_language in ['fa', 'ar']:
|
147 |
-
reshaped_text = arabic_reshaper.reshape(line)
|
148 |
-
bidi_text = get_display(reshaped_text)
|
149 |
-
c.setFont('B-Nazanin', 12)
|
150 |
-
c.drawRightString(A4[0] - 50, y_position, bidi_text)
|
151 |
-
else:
|
152 |
-
c.setFont('Arial', 12)
|
153 |
-
c.drawString(50, y_position, line)
|
154 |
-
|
155 |
-
if y_position < 50:
|
156 |
-
c.showPage()
|
157 |
-
y_position = A4[1] - 50
|
158 |
-
|
159 |
-
y_position -= line_height
|
160 |
-
|
161 |
-
c.save()
|
162 |
-
return output_file
|
163 |
-
|
164 |
-
def write_ppt(transcription, output_file, tokenizer=None, translation_model=None):
|
165 |
-
ppt = Presentation()
|
166 |
-
slide = ppt.slides.add_slide(ppt.slide_layouts[5])
|
167 |
-
text_buffer = ""
|
168 |
-
max_chars_per_slide = 400
|
169 |
-
|
170 |
-
for i, segment in enumerate(transcription['segments']):
|
171 |
-
text = segment['text']
|
172 |
-
|
173 |
-
if translation_model:
|
174 |
-
text = translate_text(text, tokenizer, translation_model)
|
175 |
-
|
176 |
-
line = f"{i + 1}. {text.strip()}\n"
|
177 |
-
|
178 |
-
if len(text_buffer) + len(line) > max_chars_per_slide:
|
179 |
-
slide.shapes.title.text = "Transcription"
|
180 |
-
textbox = slide.shapes.add_textbox(left=0, top=0, width=ppt.slide_width, height=ppt.slide_height)
|
181 |
-
textbox.text = text_buffer.strip()
|
182 |
-
|
183 |
-
slide = ppt.slides.add_slide(ppt.slide_layouts[5])
|
184 |
-
text_buffer = line
|
185 |
-
else:
|
186 |
-
text_buffer += line
|
187 |
-
|
188 |
-
if text_buffer:
|
189 |
-
slide.shapes.title.text = ""
|
190 |
-
textbox = slide.shapes.add_textbox(left=0, top=0, width=ppt.slide_width, height=ppt.slide_height)
|
191 |
-
textbox.text = text_buffer.strip()
|
192 |
-
|
193 |
-
ppt.save(output_file)
|
194 |
-
|
195 |
-
# Download YouTube Video using yt_dlp or Selenium
|
196 |
-
def download_from_ssyoutube(modified_url):
|
197 |
-
driver = webdriver.Chrome(service=ChromeService(ChromeDriverManager().install()))
|
198 |
-
driver.get(modified_url)
|
199 |
-
|
200 |
-
try:
|
201 |
-
WebDriverWait(driver, 20).until(
|
202 |
-
EC.element_to_be_clickable((By.PARTIAL_LINK_TEXT, "Low quality"))
|
203 |
-
).click()
|
204 |
-
|
205 |
-
WebDriverWait(driver, 20).until(
|
206 |
-
EC.element_to_be_clickable((By.PARTIAL_LINK_TEXT, "Download"))
|
207 |
-
).click()
|
208 |
-
|
209 |
-
time.sleep(10)
|
210 |
-
driver.quit()
|
211 |
-
return "Video downloaded successfully!"
|
212 |
-
|
213 |
-
except Exception as e:
|
214 |
-
driver.quit()
|
215 |
-
raise RuntimeError(f"Failed to download video: {e}")
|
216 |
-
|
217 |
-
def modify_youtube_url(url):
|
218 |
-
youtube_pos = url.find("youtube")
|
219 |
-
if youtube_pos == -1:
|
220 |
-
raise ValueError("Invalid YouTube URL.")
|
221 |
-
|
222 |
-
modified_url = "https://ss" + url[youtube_pos:]
|
223 |
-
return modified_url
|
224 |
-
|
225 |
-
def download_youtube_video(url):
|
226 |
-
try:
|
227 |
-
modified_url = modify_youtube_url(url)
|
228 |
-
return download_from_ssyoutube(modified_url)
|
229 |
-
except Exception as e:
|
230 |
-
raise RuntimeError(f"Error downloading YouTube video: {e}")
|
231 |
-
|
232 |
-
def transcribe_video(video_file, video_url, language, target_language, output_format):
|
233 |
-
if video_url:
|
234 |
-
video_file_path = download_youtube_video(video_url)
|
235 |
-
else:
|
236 |
-
video_file_path = video_file
|
237 |
-
|
238 |
-
transcription = model.transcribe(video_file_path)
|
239 |
-
|
240 |
-
if target_language != "en":
|
241 |
-
tokenizer, translation_model = load_translation_model(target_language)
|
242 |
-
else:
|
243 |
-
tokenizer, translation_model = None, None
|
244 |
-
|
245 |
-
output_file = None
|
246 |
-
|
247 |
-
if output_format == "SRT":
|
248 |
-
output_file = "output.srt"
|
249 |
-
write_srt(transcription, output_file, tokenizer, translation_model)
|
250 |
-
elif output_format == "Word":
|
251 |
-
output_file = "output.docx"
|
252 |
-
write_word(transcription, output_file, tokenizer, translation_model, target_language)
|
253 |
-
elif output_format == "PDF":
|
254 |
-
output_file = "output.pdf"
|
255 |
-
write_pdf(transcription, output_file, tokenizer, translation_model)
|
256 |
-
elif output_format == "PPT":
|
257 |
-
output_file = "output.pptx"
|
258 |
-
write_ppt(transcription, output_file, tokenizer, translation_model)
|
259 |
-
|
260 |
-
return output_file
|
261 |
-
|
262 |
-
|
263 |
-
def main():
|
264 |
-
with gr.Blocks() as app:
|
265 |
-
gr.Markdown("# Transcribe, Translate and Format YouTube Video Content")
|
266 |
-
|
267 |
-
video_url_input = gr.Textbox(label="YouTube Video URL (or leave blank for video file upload)")
|
268 |
-
video_file_input = gr.File(label="Upload Video File (leave blank for YouTube URL)")
|
269 |
-
language_input = gr.Dropdown(choices=["en"], label="Video Language", value="en")
|
270 |
-
target_language_input = gr.Dropdown(choices=["en", "fa", "es", "fr", "de", "it", "pt"], label="Target Language", value="en")
|
271 |
-
output_format_input = gr.Dropdown(choices=["SRT", "Word", "PDF", "PPT"], label="Output Format", value="SRT")
|
272 |
-
|
273 |
-
output_file = gr.File(label="Download Transcription", interactive=False)
|
274 |
-
|
275 |
-
transcribe_button = gr.Button("Transcribe & Translate")
|
276 |
-
|
277 |
-
def transcribe_and_translate(video_file, video_url, language, target_language, output_format):
|
278 |
-
output = transcribe_video(video_file.name if video_file else None, video_url, language, target_language, output_format)
|
279 |
-
return output
|
280 |
-
|
281 |
-
transcribe_button.click(
|
282 |
-
transcribe_and_translate,
|
283 |
-
inputs=[video_file_input, video_url_input, language_input, target_language_input, output_format_input],
|
284 |
-
outputs=output_file
|
285 |
-
)
|
286 |
-
|
287 |
-
app.launch()
|
288 |
-
|
289 |
-
if __name__ == "__main__":
|
290 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|