Spaces:
Sleeping
Sleeping
younes21000
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
3 |
-
import os
|
4 |
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
5 |
from docx import Document
|
6 |
from reportlab.pdfgen import canvas
|
@@ -13,6 +13,13 @@ from pptx import Presentation
|
|
13 |
import subprocess
|
14 |
import shlex
|
15 |
import yt_dlp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Load the Whisper model (smaller model for faster transcription)
|
18 |
model = whisper.load_model("tiny")
|
@@ -26,12 +33,6 @@ def load_translation_model(target_language):
|
|
26 |
"de": "de", # German
|
27 |
"it": "it", # Italian
|
28 |
"pt": "pt", # Portuguese
|
29 |
-
"ar": "ar", # Arabic
|
30 |
-
"zh": "zh", # Chinese
|
31 |
-
"hi": "hi", # Hindi
|
32 |
-
"ja": "ja", # Japanese
|
33 |
-
"ko": "ko", # Korean
|
34 |
-
"ru": "ru", # Russian
|
35 |
}
|
36 |
target_lang_code = lang_codes.get(target_language)
|
37 |
if not target_lang_code:
|
@@ -62,7 +63,6 @@ def format_timestamp(seconds):
|
|
62 |
seconds = seconds % 60
|
63 |
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
|
64 |
|
65 |
-
# Corrected write_srt function
|
66 |
def write_srt(transcription, output_file, tokenizer=None, translation_model=None):
|
67 |
with open(output_file, "w") as f:
|
68 |
for i, segment in enumerate(transcription['segments']):
|
@@ -80,7 +80,6 @@ def write_srt(transcription, output_file, tokenizer=None, translation_model=None
|
|
80 |
f.write(f"{start_time} --> {end_time}\n")
|
81 |
f.write(f"{text.strip()}\n\n")
|
82 |
|
83 |
-
# Embedding subtitles into video (hardsub)
|
84 |
def embed_hardsub_in_video(video_file, srt_file, output_video):
|
85 |
command = f'ffmpeg -i "{video_file}" -vf "subtitles=\'{srt_file}\'" -c:v libx264 -crf 23 -preset medium "{output_video}"'
|
86 |
try:
|
@@ -92,7 +91,6 @@ def embed_hardsub_in_video(video_file, srt_file, output_video):
|
|
92 |
except Exception as e:
|
93 |
raise RuntimeError(f"Error running ffmpeg: {e}")
|
94 |
|
95 |
-
# Helper function to write Word documents
|
96 |
def write_word(transcription, output_file, tokenizer=None, translation_model=None, target_language=None):
|
97 |
doc = Document()
|
98 |
rtl = target_language == "fa"
|
@@ -105,22 +103,15 @@ def write_word(transcription, output_file, tokenizer=None, translation_model=Non
|
|
105 |
para.paragraph_format.right_to_left = True
|
106 |
doc.save(output_file)
|
107 |
|
108 |
-
# Helper function to reverse text for RTL
|
109 |
def reverse_text_for_rtl(text):
|
110 |
return ' '.join([word[::-1] for word in text.split()])
|
111 |
|
112 |
-
# Helper function to write PDF documents
|
113 |
def write_pdf(transcription, output_file, tokenizer=None, translation_model=None):
|
114 |
-
# Create PDF with A4 page size
|
115 |
c = canvas.Canvas(output_file, pagesize=A4)
|
116 |
-
# Get the directory where app.py is located
|
117 |
app_dir = os.path.dirname(os.path.abspath(__file__))
|
118 |
-
|
119 |
-
# Construct the full path to the font files
|
120 |
nazanin_font_path = os.path.join(app_dir, 'B-NAZANIN.TTF')
|
121 |
arial_font_path = os.path.join(app_dir, 'Arial.ttf')
|
122 |
|
123 |
-
# Register B-Nazanin font
|
124 |
if os.path.exists(nazanin_font_path):
|
125 |
try:
|
126 |
pdfmetrics.registerFont(TTFont('B-Nazanin', nazanin_font_path))
|
@@ -129,7 +120,6 @@ def write_pdf(transcription, output_file, tokenizer=None, translation_model=None
|
|
129 |
else:
|
130 |
raise FileNotFoundError(f"B-Nazanin font file not found at {nazanin_font_path}. Please ensure it is available.")
|
131 |
|
132 |
-
# Register Arial font
|
133 |
if os.path.exists(arial_font_path):
|
134 |
try:
|
135 |
pdfmetrics.registerFont(TTFont('Arial', arial_font_path))
|
@@ -138,170 +128,163 @@ def write_pdf(transcription, output_file, tokenizer=None, translation_model=None
|
|
138 |
else:
|
139 |
raise FileNotFoundError(f"Arial font file not found at {arial_font_path}. Please ensure it is available.")
|
140 |
|
141 |
-
|
142 |
-
y_position = A4[1] - 50 # Start 50 points from top
|
143 |
line_height = 20
|
144 |
|
145 |
-
# Process each segment
|
146 |
for i, segment in enumerate(transcription['segments']):
|
147 |
text = segment['text']
|
148 |
|
149 |
-
# Translate if translation model is provided
|
150 |
if translation_model:
|
151 |
text = translate_text(text, tokenizer, translation_model)
|
152 |
|
153 |
-
# Format the line with segment number
|
154 |
line = f"{i + 1}. {text.strip()}"
|
155 |
|
156 |
-
# Determine target language for font and text direction
|
157 |
target_language = None
|
158 |
if translation_model:
|
159 |
-
# Assuming target language can be inferred from the tokenizer
|
160 |
target_language = tokenizer.tgt_lang
|
161 |
|
162 |
-
# Reshape and reorder the text for correct RTL display if necessary
|
163 |
if target_language in ['fa', 'ar']:
|
164 |
reshaped_text = arabic_reshaper.reshape(line)
|
165 |
bidi_text = get_display(reshaped_text)
|
166 |
-
# Set font for RTL languages
|
167 |
c.setFont('B-Nazanin', 12)
|
168 |
-
|
169 |
-
c.drawRightString(A4[0] - 50, y_position, bidi_text) # 50 points margin from right
|
170 |
else:
|
171 |
-
c.setFont('Arial', 12)
|
172 |
-
c.drawString(50, y_position, line)
|
173 |
|
174 |
-
|
175 |
-
if y_position < 50: # Leave 50 points margin at bottom
|
176 |
c.showPage()
|
177 |
-
y_position = A4[1] - 50
|
178 |
|
179 |
-
# Update y position for next line
|
180 |
y_position -= line_height
|
181 |
|
182 |
-
# Save the PDF
|
183 |
c.save()
|
184 |
return output_file
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
# Helper function to write PowerPoint slides
|
190 |
def write_ppt(transcription, output_file, tokenizer=None, translation_model=None):
|
191 |
ppt = Presentation()
|
192 |
-
slide = ppt.slides.add_slide(ppt.slide_layouts[5])
|
193 |
-
text_buffer = ""
|
194 |
-
max_chars_per_slide = 400
|
195 |
|
196 |
for i, segment in enumerate(transcription['segments']):
|
197 |
text = segment['text']
|
198 |
|
199 |
-
# Translate if translation model is provided
|
200 |
if translation_model:
|
201 |
text = translate_text(text, tokenizer, translation_model)
|
202 |
|
203 |
-
# Format the line with segment number
|
204 |
line = f"{i + 1}. {text.strip()}\n"
|
205 |
|
206 |
-
# Check if adding this line exceeds the character limit
|
207 |
if len(text_buffer) + len(line) > max_chars_per_slide:
|
208 |
-
|
209 |
-
slide.shapes.title.text = "Transcription" # Set the title for the slide
|
210 |
textbox = slide.shapes.add_textbox(left=0, top=0, width=ppt.slide_width, height=ppt.slide_height)
|
211 |
textbox.text = text_buffer.strip()
|
212 |
|
213 |
-
# Create a new slide and reset the buffer
|
214 |
slide = ppt.slides.add_slide(ppt.slide_layouts[5])
|
215 |
-
text_buffer = line
|
216 |
else:
|
217 |
-
# Otherwise, keep accumulating text
|
218 |
text_buffer += line
|
219 |
|
220 |
-
# Add any remaining text in the buffer to the last slide
|
221 |
if text_buffer:
|
222 |
-
slide.shapes.title.text = ""
|
223 |
textbox = slide.shapes.add_textbox(left=0, top=0, width=ppt.slide_width, height=ppt.slide_height)
|
224 |
textbox.text = text_buffer.strip()
|
225 |
|
226 |
ppt.save(output_file)
|
227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
-
# Function to download YouTube video
|
230 |
def download_youtube_video(url):
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
237 |
-
ydl.download([url])
|
238 |
-
return 'downloaded_video.mp4'
|
239 |
-
|
240 |
|
241 |
-
# Transcribing video and generating output
|
242 |
def transcribe_video(video_file, video_url, language, target_language, output_format):
|
243 |
if video_url:
|
244 |
video_file_path = download_youtube_video(video_url)
|
245 |
else:
|
246 |
-
video_file_path = video_file
|
|
|
|
|
247 |
|
248 |
-
result = model.transcribe(video_file_path, language=language)
|
249 |
-
video_name = os.path.splitext(video_file_path)[0]
|
250 |
if target_language != "en":
|
251 |
-
|
252 |
-
tokenizer, translation_model = load_translation_model(target_language)
|
253 |
-
except Exception as e:
|
254 |
-
raise RuntimeError(f"Error loading translation model: {e}")
|
255 |
else:
|
256 |
tokenizer, translation_model = None, None
|
257 |
|
258 |
-
|
259 |
-
write_srt(result, srt_file, tokenizer, translation_model)
|
260 |
|
261 |
if output_format == "SRT":
|
262 |
-
|
263 |
-
|
264 |
-
output_video = f"{video_name}_with_subtitles.mp4"
|
265 |
-
try:
|
266 |
-
embed_hardsub_in_video(video_file_path, srt_file, output_video)
|
267 |
-
return output_video
|
268 |
-
except Exception as e:
|
269 |
-
raise RuntimeError(f"Error embedding subtitles in video: {e}")
|
270 |
elif output_format == "Word":
|
271 |
-
|
272 |
-
write_word(
|
273 |
-
return word_file
|
274 |
elif output_format == "PDF":
|
275 |
-
|
276 |
-
write_pdf(
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
# Gradio interface with YouTube URL
|
284 |
-
iface = gr.Interface(
|
285 |
-
fn=transcribe_video,
|
286 |
-
inputs=[
|
287 |
-
gr.File(label="Upload Video File (or leave empty for YouTube link)"), # Removed 'optional=True'
|
288 |
-
gr.Textbox(label="YouTube Video URL (optional)", placeholder="https://www.youtube.com/watch?v=..."),
|
289 |
-
gr.Dropdown(label="Select Original Video Language", choices=["en", "es", "fr", "de", "it", "pt"], value="en"),
|
290 |
-
gr.Dropdown(label="Select Subtitle Translation Language", choices=["en", "fa", "es", "de", "fr", "it", "pt"], value="fa"),
|
291 |
-
gr.Radio(label="Choose Output Format", choices=["SRT", "Video with Hardsub", "Word", "PDF", "PowerPoint"], value="Video with Hardsub")
|
292 |
-
],
|
293 |
-
outputs=gr.File(label="Download File"),
|
294 |
-
title="Video Subtitle Generator with Translation & Multi-Format Output (Supports YouTube)",
|
295 |
-
description=(
|
296 |
-
"This tool allows you to generate subtitles from a video file or YouTube link using Whisper, "
|
297 |
-
"translate the subtitles into multiple languages using M2M100, and export them "
|
298 |
-
"in various formats including SRT, hardcoded subtitles in video, Word, PDF, or PowerPoint."
|
299 |
-
),
|
300 |
-
theme="compact",
|
301 |
-
live=False
|
302 |
-
)
|
303 |
|
304 |
-
if __name__ == "__main__":
|
305 |
-
iface.launch()
|
306 |
|
|
|
|
|
|
|
307 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
import whisper
|
|
|
4 |
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
5 |
from docx import Document
|
6 |
from reportlab.pdfgen import canvas
|
|
|
13 |
import subprocess
|
14 |
import shlex
|
15 |
import yt_dlp
|
16 |
+
from selenium import webdriver
|
17 |
+
from selenium.webdriver.common.by import By
|
18 |
+
from selenium.webdriver.chrome.service import Service as ChromeService
|
19 |
+
from webdriver_manager.chrome import ChromeDriverManager
|
20 |
+
from selenium.webdriver.support.ui import WebDriverWait
|
21 |
+
from selenium.webdriver.support import expected_conditions as EC
|
22 |
+
import time
|
23 |
|
24 |
# Load the Whisper model (smaller model for faster transcription)
|
25 |
model = whisper.load_model("tiny")
|
|
|
33 |
"de": "de", # German
|
34 |
"it": "it", # Italian
|
35 |
"pt": "pt", # Portuguese
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
}
|
37 |
target_lang_code = lang_codes.get(target_language)
|
38 |
if not target_lang_code:
|
|
|
63 |
seconds = seconds % 60
|
64 |
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
|
65 |
|
|
|
66 |
def write_srt(transcription, output_file, tokenizer=None, translation_model=None):
|
67 |
with open(output_file, "w") as f:
|
68 |
for i, segment in enumerate(transcription['segments']):
|
|
|
80 |
f.write(f"{start_time} --> {end_time}\n")
|
81 |
f.write(f"{text.strip()}\n\n")
|
82 |
|
|
|
83 |
def embed_hardsub_in_video(video_file, srt_file, output_video):
|
84 |
command = f'ffmpeg -i "{video_file}" -vf "subtitles=\'{srt_file}\'" -c:v libx264 -crf 23 -preset medium "{output_video}"'
|
85 |
try:
|
|
|
91 |
except Exception as e:
|
92 |
raise RuntimeError(f"Error running ffmpeg: {e}")
|
93 |
|
|
|
94 |
def write_word(transcription, output_file, tokenizer=None, translation_model=None, target_language=None):
|
95 |
doc = Document()
|
96 |
rtl = target_language == "fa"
|
|
|
103 |
para.paragraph_format.right_to_left = True
|
104 |
doc.save(output_file)
|
105 |
|
|
|
106 |
def reverse_text_for_rtl(text):
|
107 |
return ' '.join([word[::-1] for word in text.split()])
|
108 |
|
|
|
109 |
def write_pdf(transcription, output_file, tokenizer=None, translation_model=None):
|
|
|
110 |
c = canvas.Canvas(output_file, pagesize=A4)
|
|
|
111 |
app_dir = os.path.dirname(os.path.abspath(__file__))
|
|
|
|
|
112 |
nazanin_font_path = os.path.join(app_dir, 'B-NAZANIN.TTF')
|
113 |
arial_font_path = os.path.join(app_dir, 'Arial.ttf')
|
114 |
|
|
|
115 |
if os.path.exists(nazanin_font_path):
|
116 |
try:
|
117 |
pdfmetrics.registerFont(TTFont('B-Nazanin', nazanin_font_path))
|
|
|
120 |
else:
|
121 |
raise FileNotFoundError(f"B-Nazanin font file not found at {nazanin_font_path}. Please ensure it is available.")
|
122 |
|
|
|
123 |
if os.path.exists(arial_font_path):
|
124 |
try:
|
125 |
pdfmetrics.registerFont(TTFont('Arial', arial_font_path))
|
|
|
128 |
else:
|
129 |
raise FileNotFoundError(f"Arial font file not found at {arial_font_path}. Please ensure it is available.")
|
130 |
|
131 |
+
y_position = A4[1] - 50
|
|
|
132 |
line_height = 20
|
133 |
|
|
|
134 |
for i, segment in enumerate(transcription['segments']):
|
135 |
text = segment['text']
|
136 |
|
|
|
137 |
if translation_model:
|
138 |
text = translate_text(text, tokenizer, translation_model)
|
139 |
|
|
|
140 |
line = f"{i + 1}. {text.strip()}"
|
141 |
|
|
|
142 |
target_language = None
|
143 |
if translation_model:
|
|
|
144 |
target_language = tokenizer.tgt_lang
|
145 |
|
|
|
146 |
if target_language in ['fa', 'ar']:
|
147 |
reshaped_text = arabic_reshaper.reshape(line)
|
148 |
bidi_text = get_display(reshaped_text)
|
|
|
149 |
c.setFont('B-Nazanin', 12)
|
150 |
+
c.drawRightString(A4[0] - 50, y_position, bidi_text)
|
|
|
151 |
else:
|
152 |
+
c.setFont('Arial', 12)
|
153 |
+
c.drawString(50, y_position, line)
|
154 |
|
155 |
+
if y_position < 50:
|
|
|
156 |
c.showPage()
|
157 |
+
y_position = A4[1] - 50
|
158 |
|
|
|
159 |
y_position -= line_height
|
160 |
|
|
|
161 |
c.save()
|
162 |
return output_file
|
163 |
|
|
|
|
|
|
|
|
|
164 |
def write_ppt(transcription, output_file, tokenizer=None, translation_model=None):
|
165 |
ppt = Presentation()
|
166 |
+
slide = ppt.slides.add_slide(ppt.slide_layouts[5])
|
167 |
+
text_buffer = ""
|
168 |
+
max_chars_per_slide = 400
|
169 |
|
170 |
for i, segment in enumerate(transcription['segments']):
|
171 |
text = segment['text']
|
172 |
|
|
|
173 |
if translation_model:
|
174 |
text = translate_text(text, tokenizer, translation_model)
|
175 |
|
|
|
176 |
line = f"{i + 1}. {text.strip()}\n"
|
177 |
|
|
|
178 |
if len(text_buffer) + len(line) > max_chars_per_slide:
|
179 |
+
slide.shapes.title.text = "Transcription"
|
|
|
180 |
textbox = slide.shapes.add_textbox(left=0, top=0, width=ppt.slide_width, height=ppt.slide_height)
|
181 |
textbox.text = text_buffer.strip()
|
182 |
|
|
|
183 |
slide = ppt.slides.add_slide(ppt.slide_layouts[5])
|
184 |
+
text_buffer = line
|
185 |
else:
|
|
|
186 |
text_buffer += line
|
187 |
|
|
|
188 |
if text_buffer:
|
189 |
+
slide.shapes.title.text = ""
|
190 |
textbox = slide.shapes.add_textbox(left=0, top=0, width=ppt.slide_width, height=ppt.slide_height)
|
191 |
textbox.text = text_buffer.strip()
|
192 |
|
193 |
ppt.save(output_file)
|
194 |
|
195 |
+
# Download YouTube Video using yt_dlp or Selenium
|
196 |
+
def download_from_ssyoutube(modified_url):
|
197 |
+
driver = webdriver.Chrome(service=ChromeService(ChromeDriverManager().install()))
|
198 |
+
driver.get(modified_url)
|
199 |
+
|
200 |
+
try:
|
201 |
+
WebDriverWait(driver, 20).until(
|
202 |
+
EC.element_to_be_clickable((By.PARTIAL_LINK_TEXT, "Low quality"))
|
203 |
+
).click()
|
204 |
+
|
205 |
+
WebDriverWait(driver, 20).until(
|
206 |
+
EC.element_to_be_clickable((By.PARTIAL_LINK_TEXT, "Download"))
|
207 |
+
).click()
|
208 |
+
|
209 |
+
time.sleep(10)
|
210 |
+
driver.quit()
|
211 |
+
return "Video downloaded successfully!"
|
212 |
+
|
213 |
+
except Exception as e:
|
214 |
+
driver.quit()
|
215 |
+
raise RuntimeError(f"Failed to download video: {e}")
|
216 |
+
|
217 |
+
def modify_youtube_url(url):
|
218 |
+
youtube_pos = url.find("youtube")
|
219 |
+
if youtube_pos == -1:
|
220 |
+
raise ValueError("Invalid YouTube URL.")
|
221 |
+
|
222 |
+
modified_url = "https://ss" + url[youtube_pos:]
|
223 |
+
return modified_url
|
224 |
|
|
|
225 |
def download_youtube_video(url):
|
226 |
+
try:
|
227 |
+
modified_url = modify_youtube_url(url)
|
228 |
+
return download_from_ssyoutube(modified_url)
|
229 |
+
except Exception as e:
|
230 |
+
raise RuntimeError(f"Error downloading YouTube video: {e}")
|
|
|
|
|
|
|
|
|
231 |
|
|
|
232 |
def transcribe_video(video_file, video_url, language, target_language, output_format):
|
233 |
if video_url:
|
234 |
video_file_path = download_youtube_video(video_url)
|
235 |
else:
|
236 |
+
video_file_path = video_file
|
237 |
+
|
238 |
+
transcription = model.transcribe(video_file_path)
|
239 |
|
|
|
|
|
240 |
if target_language != "en":
|
241 |
+
tokenizer, translation_model = load_translation_model(target_language)
|
|
|
|
|
|
|
242 |
else:
|
243 |
tokenizer, translation_model = None, None
|
244 |
|
245 |
+
output_file = None
|
|
|
246 |
|
247 |
if output_format == "SRT":
|
248 |
+
output_file = "output.srt"
|
249 |
+
write_srt(transcription, output_file, tokenizer, translation_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
elif output_format == "Word":
|
251 |
+
output_file = "output.docx"
|
252 |
+
write_word(transcription, output_file, tokenizer, translation_model, target_language)
|
|
|
253 |
elif output_format == "PDF":
|
254 |
+
output_file = "output.pdf"
|
255 |
+
write_pdf(transcription, output_file, tokenizer, translation_model)
|
256 |
+
elif output_format == "PPT":
|
257 |
+
output_file = "output.pptx"
|
258 |
+
write_ppt(transcription, output_file, tokenizer, translation_model)
|
259 |
+
|
260 |
+
return output_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
|
|
|
|
262 |
|
263 |
+
def main():
|
264 |
+
with gr.Blocks() as app:
|
265 |
+
gr.Markdown("# Transcribe, Translate and Format YouTube Video Content")
|
266 |
|
267 |
+
video_url_input = gr.Textbox(label="YouTube Video URL (or leave blank for video file upload)")
|
268 |
+
video_file_input = gr.File(label="Upload Video File (leave blank for YouTube URL)")
|
269 |
+
language_input = gr.Dropdown(choices=["en"], label="Video Language", value="en")
|
270 |
+
target_language_input = gr.Dropdown(choices=["en", "fa", "es", "fr", "de", "it", "pt"], label="Target Language", value="en")
|
271 |
+
output_format_input = gr.Dropdown(choices=["SRT", "Word", "PDF", "PPT"], label="Output Format", value="SRT")
|
272 |
+
|
273 |
+
output_file = gr.File(label="Download Transcription", interactive=False)
|
274 |
+
|
275 |
+
transcribe_button = gr.Button("Transcribe & Translate")
|
276 |
+
|
277 |
+
def transcribe_and_translate(video_file, video_url, language, target_language, output_format):
|
278 |
+
output = transcribe_video(video_file.name if video_file else None, video_url, language, target_language, output_format)
|
279 |
+
return output
|
280 |
+
|
281 |
+
transcribe_button.click(
|
282 |
+
transcribe_and_translate,
|
283 |
+
inputs=[video_file_input, video_url_input, language_input, target_language_input, output_format_input],
|
284 |
+
outputs=output_file
|
285 |
+
)
|
286 |
+
|
287 |
+
app.launch()
|
288 |
+
|
289 |
+
if __name__ == "__main__":
|
290 |
+
main()
|