Spaces:
Running
on
L4
Running
on
L4
File size: 11,355 Bytes
a22eb82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import torch
from torch import nn
import torch.nn.functional as F
from src.facerender.modules.util import ResBlock2d, SameBlock2d, UpBlock2d, DownBlock2d, ResBlock3d, SPADEResnetBlock
from src.facerender.modules.dense_motion import DenseMotionNetwork
class OcclusionAwareGenerator(nn.Module):
"""
Generator follows NVIDIA architecture.
"""
def __init__(self, image_channel, feature_channel, num_kp, block_expansion, max_features, num_down_blocks, reshape_channel, reshape_depth,
num_resblocks, estimate_occlusion_map=False, dense_motion_params=None, estimate_jacobian=False):
super(OcclusionAwareGenerator, self).__init__()
if dense_motion_params is not None:
self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, feature_channel=feature_channel,
estimate_occlusion_map=estimate_occlusion_map,
**dense_motion_params)
else:
self.dense_motion_network = None
self.first = SameBlock2d(image_channel, block_expansion, kernel_size=(7, 7), padding=(3, 3))
down_blocks = []
for i in range(num_down_blocks):
in_features = min(max_features, block_expansion * (2 ** i))
out_features = min(max_features, block_expansion * (2 ** (i + 1)))
down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
self.down_blocks = nn.ModuleList(down_blocks)
self.second = nn.Conv2d(in_channels=out_features, out_channels=max_features, kernel_size=1, stride=1)
self.reshape_channel = reshape_channel
self.reshape_depth = reshape_depth
self.resblocks_3d = torch.nn.Sequential()
for i in range(num_resblocks):
self.resblocks_3d.add_module('3dr' + str(i), ResBlock3d(reshape_channel, kernel_size=3, padding=1))
out_features = block_expansion * (2 ** (num_down_blocks))
self.third = SameBlock2d(max_features, out_features, kernel_size=(3, 3), padding=(1, 1), lrelu=True)
self.fourth = nn.Conv2d(in_channels=out_features, out_channels=out_features, kernel_size=1, stride=1)
self.resblocks_2d = torch.nn.Sequential()
for i in range(num_resblocks):
self.resblocks_2d.add_module('2dr' + str(i), ResBlock2d(out_features, kernel_size=3, padding=1))
up_blocks = []
for i in range(num_down_blocks):
in_features = max(block_expansion, block_expansion * (2 ** (num_down_blocks - i)))
out_features = max(block_expansion, block_expansion * (2 ** (num_down_blocks - i - 1)))
up_blocks.append(UpBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
self.up_blocks = nn.ModuleList(up_blocks)
self.final = nn.Conv2d(block_expansion, image_channel, kernel_size=(7, 7), padding=(3, 3))
self.estimate_occlusion_map = estimate_occlusion_map
self.image_channel = image_channel
def deform_input(self, inp, deformation):
_, d_old, h_old, w_old, _ = deformation.shape
_, _, d, h, w = inp.shape
if d_old != d or h_old != h or w_old != w:
deformation = deformation.permute(0, 4, 1, 2, 3)
deformation = F.interpolate(deformation, size=(d, h, w), mode='trilinear')
deformation = deformation.permute(0, 2, 3, 4, 1)
return F.grid_sample(inp, deformation)
def forward(self, source_image, kp_driving, kp_source):
# Encoding (downsampling) part
out = self.first(source_image)
for i in range(len(self.down_blocks)):
out = self.down_blocks[i](out)
out = self.second(out)
bs, c, h, w = out.shape
# print(out.shape)
feature_3d = out.view(bs, self.reshape_channel, self.reshape_depth, h ,w)
feature_3d = self.resblocks_3d(feature_3d)
# Transforming feature representation according to deformation and occlusion
output_dict = {}
if self.dense_motion_network is not None:
dense_motion = self.dense_motion_network(feature=feature_3d, kp_driving=kp_driving,
kp_source=kp_source)
output_dict['mask'] = dense_motion['mask']
if 'occlusion_map' in dense_motion:
occlusion_map = dense_motion['occlusion_map']
output_dict['occlusion_map'] = occlusion_map
else:
occlusion_map = None
deformation = dense_motion['deformation']
out = self.deform_input(feature_3d, deformation)
bs, c, d, h, w = out.shape
out = out.view(bs, c*d, h, w)
out = self.third(out)
out = self.fourth(out)
if occlusion_map is not None:
if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]:
occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear')
out = out * occlusion_map
# output_dict["deformed"] = self.deform_input(source_image, deformation) # 3d deformation cannot deform 2d image
# Decoding part
out = self.resblocks_2d(out)
for i in range(len(self.up_blocks)):
out = self.up_blocks[i](out)
out = self.final(out)
out = F.sigmoid(out)
output_dict["prediction"] = out
return output_dict
class SPADEDecoder(nn.Module):
def __init__(self):
super().__init__()
ic = 256
oc = 64
norm_G = 'spadespectralinstance'
label_nc = 256
self.fc = nn.Conv2d(ic, 2 * ic, 3, padding=1)
self.G_middle_0 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
self.G_middle_1 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
self.G_middle_2 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
self.G_middle_3 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
self.G_middle_4 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
self.G_middle_5 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc)
self.up_0 = SPADEResnetBlock(2 * ic, ic, norm_G, label_nc)
self.up_1 = SPADEResnetBlock(ic, oc, norm_G, label_nc)
self.conv_img = nn.Conv2d(oc, 3, 3, padding=1)
self.up = nn.Upsample(scale_factor=2)
def forward(self, feature):
seg = feature
x = self.fc(feature)
x = self.G_middle_0(x, seg)
x = self.G_middle_1(x, seg)
x = self.G_middle_2(x, seg)
x = self.G_middle_3(x, seg)
x = self.G_middle_4(x, seg)
x = self.G_middle_5(x, seg)
x = self.up(x)
x = self.up_0(x, seg) # 256, 128, 128
x = self.up(x)
x = self.up_1(x, seg) # 64, 256, 256
x = self.conv_img(F.leaky_relu(x, 2e-1))
# x = torch.tanh(x)
x = F.sigmoid(x)
return x
class OcclusionAwareSPADEGenerator(nn.Module):
def __init__(self, image_channel, feature_channel, num_kp, block_expansion, max_features, num_down_blocks, reshape_channel, reshape_depth,
num_resblocks, estimate_occlusion_map=False, dense_motion_params=None, estimate_jacobian=False):
super(OcclusionAwareSPADEGenerator, self).__init__()
if dense_motion_params is not None:
self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, feature_channel=feature_channel,
estimate_occlusion_map=estimate_occlusion_map,
**dense_motion_params)
else:
self.dense_motion_network = None
self.first = SameBlock2d(image_channel, block_expansion, kernel_size=(3, 3), padding=(1, 1))
down_blocks = []
for i in range(num_down_blocks):
in_features = min(max_features, block_expansion * (2 ** i))
out_features = min(max_features, block_expansion * (2 ** (i + 1)))
down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
self.down_blocks = nn.ModuleList(down_blocks)
self.second = nn.Conv2d(in_channels=out_features, out_channels=max_features, kernel_size=1, stride=1)
self.reshape_channel = reshape_channel
self.reshape_depth = reshape_depth
self.resblocks_3d = torch.nn.Sequential()
for i in range(num_resblocks):
self.resblocks_3d.add_module('3dr' + str(i), ResBlock3d(reshape_channel, kernel_size=3, padding=1))
out_features = block_expansion * (2 ** (num_down_blocks))
self.third = SameBlock2d(max_features, out_features, kernel_size=(3, 3), padding=(1, 1), lrelu=True)
self.fourth = nn.Conv2d(in_channels=out_features, out_channels=out_features, kernel_size=1, stride=1)
self.estimate_occlusion_map = estimate_occlusion_map
self.image_channel = image_channel
self.decoder = SPADEDecoder()
def deform_input(self, inp, deformation):
_, d_old, h_old, w_old, _ = deformation.shape
_, _, d, h, w = inp.shape
if d_old != d or h_old != h or w_old != w:
deformation = deformation.permute(0, 4, 1, 2, 3)
deformation = F.interpolate(deformation, size=(d, h, w), mode='trilinear')
deformation = deformation.permute(0, 2, 3, 4, 1)
return F.grid_sample(inp, deformation)
def forward(self, source_image, kp_driving, kp_source):
# Encoding (downsampling) part
out = self.first(source_image)
for i in range(len(self.down_blocks)):
out = self.down_blocks[i](out)
out = self.second(out)
bs, c, h, w = out.shape
# print(out.shape)
feature_3d = out.view(bs, self.reshape_channel, self.reshape_depth, h ,w)
feature_3d = self.resblocks_3d(feature_3d)
# Transforming feature representation according to deformation and occlusion
output_dict = {}
if self.dense_motion_network is not None:
dense_motion = self.dense_motion_network(feature=feature_3d, kp_driving=kp_driving,
kp_source=kp_source)
output_dict['mask'] = dense_motion['mask']
if 'occlusion_map' in dense_motion:
occlusion_map = dense_motion['occlusion_map']
output_dict['occlusion_map'] = occlusion_map
else:
occlusion_map = None
deformation = dense_motion['deformation']
out = self.deform_input(feature_3d, deformation)
bs, c, d, h, w = out.shape
out = out.view(bs, c*d, h, w)
out = self.third(out)
out = self.fourth(out)
if occlusion_map is not None:
if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]:
occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear')
out = out * occlusion_map
# Decoding part
out = self.decoder(out)
output_dict["prediction"] = out
return output_dict |