File size: 3,342 Bytes
00adabe
85b9ea4
51a7d9e
4b42ada
85b9ea4
 
51a7d9e
85b9ea4
36093ae
 
 
 
 
 
 
4b42ada
36093ae
 
 
 
00adabe
 
 
85b9ea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00adabe
85b9ea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a7d9e
85b9ea4
 
 
 
 
 
 
 
 
51a7d9e
85b9ea4
51a7d9e
 
 
85b9ea4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
import spaces
import gradio as gr
from diffusers import FluxInpaintPipeline, FluxTransformer2DModel
import random
import numpy as np

MAX_SEED = np.iinfo(np.int32).max
model = "black-forest-labs/FLUX.1-dev"

if torch.cuda.is_available():
    transformer = FluxTransformer2DModel.from_single_file(
        "https://huggingface.co/black-forest-labs/FLUX.1-Fill-dev/blob/main/flux1-fill-dev.safetensors",
        torch_dtype=torch.bfloat16
    )
    pipe = FluxInpaintPipeline.from_pretrained(
        model, 
        transformer=transformer,
        torch_dtype=torch.bfloat16)
    pipe.to("cuda")


@spaces.GPU()
def inpaintGen(
        imgMask,
        inpaint_prompt: str,
        strength: float,
        guidance: float,
        num_steps: int,
        seed: int,
        randomize_seed: bool,
        progress=gr.Progress(track_tqdm=True)):

    source_img = imgMask["background"]
    mask_img = imgMask["layers"][0]

    if not source_path:
        raise gr.Error("Please upload an image.")

    if not mask_path:
        raise gr.Error("Please draw a mask on the image.")
        
    width, height = source_img.size

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=DEVICE).manual_seed(seed)

    result = pipe(
        prompt=inpaint_prompt,
        image=source_img,
        seed=seed,
        mask_image=mask_img,
        width=width,
        height=height,
        strength=strength,
        num_inference_steps=num_steps,
        generator=generator,
        guidance_scale=guidance
    ).images[0]
    
    return result
 

with gr.Blocks(theme="ocean", title="Flux.1 dev inpaint", css=CSS) as demo:
    gr.HTML("<h1><center>Flux.1 dev Inpaint</center></h1>")
    gr.HTML("""
        <p>
            <center>
                A partial redraw of the image based on your prompt words and occluded parts.
            </center>
        </p>
    """)
    with gr.Row():
        with gr.Column():
            imgMask = gr.ImageMask(type="pil", label="Image", layers=False, height=800)
            inpaint_prompt = gr.Textbox(label='Prompts ✏️', placeholder="A hat...")
            with gr.Row():
                Inpaint_sendBtn = gr.Button(value="Submit", variant='primary')
                Inpaint_clearBtn = gr.ClearButton([imgMask, inpaint_prompt], value="Clear")
        image_out = gr.Image(type="pil", label="Output", height=960)
    with gr.Accordion("Advanced ⚙️", open=False):
        strength = gr.Slider(label="Strength", minimum=0, maximum=1, value=1, step=0.1)
        guidance = gr.Slider(label="Guidance scale", minimum=1, maximum=20, value=7.5, step=0.1)
        num_steps = gr.Slider(label="Steps", minimum=1, maximum=20, value=20, step=1)
        seed = gr.Number(label="Seed", value=42, precision=0)
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

    gr.on(
        triggers = [
            inpaint_prompt.submit,
            Inpaint_sendBtn.click,
        ],
        fn = inpaintGen,
        inputs = [
            imgMask,
            inpaint_prompt,
            strength,
            guidance,
            num_steps,
            seed,
            randomize_seed
        ],
        outputs = [image_out, seed]
    )

if __name__ == "__main__":
    demo.queue(api_open=False).launch(show_api=False, share=False)