Spaces:
Runtime error
Runtime error
vigneshwar472
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
import subprocess # π₯²
|
5 |
+
subprocess.run(
|
6 |
+
"pip install flash-attn --no-build-isolation",
|
7 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
8 |
+
shell=True,
|
9 |
+
)
|
10 |
+
# subprocess.run(
|
11 |
+
# "pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git",
|
12 |
+
# shell=True,
|
13 |
+
# )
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from llava.model.builder import load_pretrained_model
|
17 |
+
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
|
18 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
|
19 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
20 |
+
import copy
|
21 |
+
import warnings
|
22 |
+
from decord import VideoReader, cpu
|
23 |
+
import numpy as np
|
24 |
+
import tempfile
|
25 |
+
import os
|
26 |
+
import shutil
|
27 |
+
#warnings.filterwarnings("ignore")
|
28 |
+
title = "# Demo of VLM on Crime scenes"
|
29 |
+
description1 ="""The **ππΉLLaVA-Video-7B-Qwen2** is a 7B parameter model trained on the ππΉLLaVA-Video-178K dataset and the LLaVA-OneVision dataset. It is [based on the **Qwen2 language model**](https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f), supporting a context window of up to 32K tokens. The model can process and interact with images, multi-images, and videos, with specific optimizations for video analysis.
|
30 |
+
This model leverages the **SO400M vision backbone** for visual input and Qwen2 for language processing, making it highly efficient in multi-modal reasoning, including visual and video-based tasks.
|
31 |
+
ππΉLLaVA-Video has larger variants of [32B](https://huggingface.co/lmms-lab/LLaVA-NeXT-Video-32B-Qwen) and [72B](https://huggingface.co/lmms-lab/LLaVA-Video-72B-Qwen2) and with a [variant](https://huggingface.co/lmms-lab/LLaVA-Video-7B-Qwen2-Video-Only) only trained on the new synthetic data
|
32 |
+
For further details, please visit the [Project Page](https://github.com/LLaVA-VL/LLaVA-NeXT) or check out the corresponding [research paper](https://arxiv.org/abs/2410.02713).
|
33 |
+
- **Architecture**: `LlavaQwenForCausalLM`
|
34 |
+
- **Attention Heads**: 28
|
35 |
+
- **Hidden Layers**: 28
|
36 |
+
- **Hidden Size**: 3584
|
37 |
+
"""
|
38 |
+
description2 ="""
|
39 |
+
We have leveraged this VLM for Crime scene video description. The expected performance is achieved and we thank everyone who made this possible.
|
40 |
+
"""
|
41 |
+
|
42 |
+
|
43 |
+
def load_video(video_path, max_frames_num, fps=1, force_sample=False):
|
44 |
+
if max_frames_num == 0:
|
45 |
+
return np.zeros((1, 336, 336, 3))
|
46 |
+
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
47 |
+
total_frame_num = len(vr)
|
48 |
+
video_time = total_frame_num / vr.get_avg_fps()
|
49 |
+
fps = round(vr.get_avg_fps()/fps)
|
50 |
+
frame_idx = [i for i in range(0, len(vr), fps)]
|
51 |
+
frame_time = [i/fps for i in frame_idx]
|
52 |
+
if len(frame_idx) > max_frames_num or force_sample:
|
53 |
+
sample_fps = max_frames_num
|
54 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
|
55 |
+
frame_idx = uniform_sampled_frames.tolist()
|
56 |
+
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
|
57 |
+
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
|
58 |
+
spare_frames = vr.get_batch(frame_idx).asnumpy()
|
59 |
+
return spare_frames, frame_time, video_time
|
60 |
+
|
61 |
+
# Load the model
|
62 |
+
pretrained = "lmms-lab/LLaVA-Video-7B-Qwen2"
|
63 |
+
model_name = "llava_qwen"
|
64 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
65 |
+
device_map = "auto"
|
66 |
+
|
67 |
+
print("Loading model...")
|
68 |
+
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map)
|
69 |
+
model.eval()
|
70 |
+
print("Model loaded successfully!")
|
71 |
+
|
72 |
+
@spaces.GPU
|
73 |
+
def process_video(video_path, question):
|
74 |
+
max_frames_num = 64
|
75 |
+
video, frame_time, video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
|
76 |
+
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].to(device).bfloat16()
|
77 |
+
video = [video]
|
78 |
+
|
79 |
+
conv_template = "qwen_1_5"
|
80 |
+
time_instruction = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. These frames are located at {frame_time}. Please answer the following questions related to this video."
|
81 |
+
|
82 |
+
full_question = DEFAULT_IMAGE_TOKEN + f"{time_instruction}\n{question}"
|
83 |
+
|
84 |
+
conv = copy.deepcopy(conv_templates[conv_template])
|
85 |
+
conv.append_message(conv.roles[0], full_question)
|
86 |
+
conv.append_message(conv.roles[1], None)
|
87 |
+
prompt_question = conv.get_prompt()
|
88 |
+
|
89 |
+
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
|
90 |
+
|
91 |
+
with torch.no_grad():
|
92 |
+
output = model.generate(
|
93 |
+
input_ids,
|
94 |
+
images=video,
|
95 |
+
modalities=["video"],
|
96 |
+
do_sample=False,
|
97 |
+
temperature=0,
|
98 |
+
max_new_tokens=4096,
|
99 |
+
)
|
100 |
+
|
101 |
+
response = tokenizer.batch_decode(output, skip_special_tokens=True)[0].strip()
|
102 |
+
return response
|
103 |
+
|
104 |
+
def gradio_interface(video_file, question):
|
105 |
+
if video_file is None:
|
106 |
+
return "Please upload a video file."
|
107 |
+
response = process_video(video_file, question)
|
108 |
+
return response
|
109 |
+
|
110 |
+
with gr.Blocks() as demo:
|
111 |
+
gr.Markdown(title)
|
112 |
+
with gr.Row():
|
113 |
+
with gr.Group():
|
114 |
+
gr.Markdown(description1)
|
115 |
+
with gr.Group():
|
116 |
+
gr.Markdown(description2)
|
117 |
+
with gr.Row():
|
118 |
+
with gr.Column():
|
119 |
+
video_input = gr.Video()
|
120 |
+
question_input = gr.Textbox(label="ππ»ββοΈUser Question", placeholder="Ask a question about the video... or Ask to describe the video")
|
121 |
+
submit_button = gr.Button("Ask")
|
122 |
+
output = gr.Textbox(label="VLM Bot")
|
123 |
+
|
124 |
+
submit_button.click(
|
125 |
+
fn=gradio_interface,
|
126 |
+
inputs=[video_input, question_input],
|
127 |
+
outputs=output
|
128 |
+
)
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
demo.launch(show_error=True, ssr_mode = False)
|