File size: 6,206 Bytes
bd55f43
 
 
f4a69a4
 
bd55f43
f4a69a4
 
bd55f43
f4a69a4
 
bd55f43
 
f4a69a4
bd55f43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4a69a4
bd55f43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4a69a4
bd55f43
 
 
f4a69a4
bd55f43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4a69a4
bd55f43
 
f4a69a4
bd55f43
 
 
 
 
 
f4a69a4
 
 
bd55f43
 
 
f4a69a4
bd55f43
f4a69a4
 
 
 
 
bd55f43
f4a69a4
bd55f43
f4a69a4
 
 
 
 
 
 
 
bd55f43
f4a69a4
bd55f43
 
f4a69a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import numpy as np
import tensorflow as tf
from tqdm import tqdm
import gradio as gr
import typing
from huggingface_hub import HfApi, Repository
import tempfile

# 定义模型和辅助函数
print("Importing necessary libraries and defining functions...")

CONTENT_LAYERS = {'block4_conv2': 0.5, 'block5_conv2': 0.5}
STYLE_LAYERS = {'block1_conv1': 0.2, 'block2_conv1': 0.2, 'block3_conv1': 0.2, 'block4_conv1': 0.2, 'block5_conv1': 0.2}

CONTENT_LOSS_FACTOR = 1
STYLE_LOSS_FACTOR = 100

WIDTH = 450
HEIGHT = 300
EPOCHS = 20
STEPS_PER_EPOCH = 100
LEARNING_RATE = 0.03

image_mean = tf.constant([0.485, 0.456, 0.406])
image_std = tf.constant([0.299, 0.224, 0.225])

def normalization(x):
    return (x - image_mean) / image_std

def load_images(image_path, width=WIDTH, height=HEIGHT):
    x = tf.io.read_file(image_path)
    x = tf.image.decode_jpeg(x, channels=3)
    x = tf.image.resize(x, [height, width])
    x = x / 255.
    x = normalization(x)
    x = tf.reshape(x, [1, height, width, 3])
    return x

def save_image(image, filename):
    x = tf.reshape(image, image.shape[1:])
    x = x * image_std + image_mean
    x = x * 255.
    x = tf.cast(x, tf.int32)
    x = tf.clip_by_value(x, 0, 255)
    x = tf.cast(x, tf.uint8)
    x = tf.image.encode_jpeg(x)
    tf.io.write_file(filename, x)

def get_vgg19_model(layers):
    vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
    outputs = [vgg.get_layer(layer).output for layer in layers]
    model = tf.keras.Model([vgg.input, ], outputs)
    model.trainable = False
    return model

class NeuralStyleTransferModel(tf.keras.Model):
    def __init__(self, content_layers=CONTENT_LAYERS, style_layers=STYLE_LAYERS):
        super(NeuralStyleTransferModel, self).__init__()
        self.content_layers = content_layers
        self.style_layers = style_layers
        layers = list(self.content_layers.keys()) + list(self.style_layers.keys())
        self.outputs_index_map = dict(zip(layers, range(len(layers))))
        self.vgg = get_vgg19_model(layers)

    def call(self, inputs, training=None, mask=None):
        outputs = self.vgg(inputs)
        content_outputs = []
        for layer, factor in self.content_layers.items():
            content_outputs.append((outputs[self.outputs_index_map[layer]][0], factor))
        style_outputs = []
        for layer, factor in self.style_layers.items():
            style_outputs.append((outputs[self.outputs_index_map[layer]][0], factor))
        return {'content': content_outputs, 'style': style_outputs}

def _compute_content_loss(noise_features, target_features):
    content_loss = tf.reduce_sum(tf.square(noise_features - target_features))
    x = 2. * WIDTH * HEIGHT * 3
    content_loss = content_loss / x
    return content_loss

def compute_content_loss(noise_content_features, target_content_features):
    content_losses = []
    for (noise_feature, factor), (target_feature, _) in zip(noise_content_features, target_content_features):
        layer_content_loss = _compute_content_loss(noise_feature, target_feature)
        content_losses.append(layer_content_loss * factor)
    return tf.reduce_sum(content_losses)

def gram_matrix(feature):
    x = tf.transpose(feature, perm=[2, 0, 1])
    x = tf.reshape(x, (x.shape[0], -1))
    return x @ tf.transpose(x)

def _compute_style_loss(noise_feature, target_feature):
    noise_gram_matrix = gram_matrix(noise_feature)
    style_gram_matrix = gram_matrix(target_feature)
    style_loss = tf.reduce_sum(tf.square(noise_gram_matrix - style_gram_matrix))
    x = 4. * (WIDTH * HEIGHT) ** 2 * 3 ** 2
    return style_loss / x

def compute_style_loss(noise_style_features, target_style_features):
    style_losses = []
    for (noise_feature, factor), (target_feature, _) in zip(noise_style_features, target_style_features):
        layer_style_loss = _compute_style_loss(noise_feature, target_feature)
        style_losses.append(layer_style_loss * factor)
    return tf.reduce_sum(style_losses)

def total_loss(noise_features, target_content_features, target_style_features):
    content_loss = compute_content_loss(noise_features['content'], target_content_features)
    style_loss = compute_style_loss(noise_features['style'], target_style_features)
    return content_loss * CONTENT_LOSS_FACTOR + style_loss * STYLE_LOSS_FACTOR

optimizer = tf.keras.optimizers.Adam(LEARNING_RATE)
model = NeuralStyleTransferModel()

def neural_style_transfer(content_image_path, style_image_path):
    content_image = load_images(content_image_path)
    style_image = load_images(style_image_path)
    target_content_features = model([content_image, ])['content']
    target_style_features = model([style_image, ])['style']

    noise_image = tf.Variable((content_image + np.random.uniform(-0.2, 0.2, (1, HEIGHT, WIDTH, 3))) / 2)

    @tf.function
    def train_one_step():
        with tf.GradientTape() as tape:
            noise_outputs = model(noise_image)
            loss = total_loss(noise_outputs, target_content_features, target_style_features)
        grad = tape.gradient(loss, noise_image)
        optimizer.apply_gradients([(grad, noise_image)])
        return loss

    for epoch in range(EPOCHS):
        for step in range(STEPS_PER_EPOCH):
            _loss = train_one_step()

    output_image_path = tempfile.mktemp(suffix='.jpg')
    save_image(noise_image, output_image_path)
    return output_image_path

def transfer_style(content_image, style_image):
    content_image_path = tempfile.mktemp(suffix='.jpg')
    style_image_path = tempfile.mktemp(suffix='.jpg')

    content_image.save(content_image_path)
    style_image.save(style_image_path)

    output_image_path = neural_style_transfer(content_image_path, style_image_path)
    return output_image_path

# 创建Gradio界面
iface = gr.Interface(
    fn=transfer_style,
    inputs=[
        gr.inputs.Image(type="pil", label="Content Image"),
        gr.inputs.Image(type="pil", label="Style Image")
    ],
    outputs=gr.outputs.Image(type="file", label="Styled Image"),
    title="Neural Style Transfer",
    description="Upload a content image and a style image to perform neural style transfer."
)

# 运行Gradio应用
iface.launch()