Spaces:
Runtime error
Runtime error
File size: 6,206 Bytes
bd55f43 f4a69a4 bd55f43 f4a69a4 bd55f43 f4a69a4 bd55f43 f4a69a4 bd55f43 f4a69a4 bd55f43 f4a69a4 bd55f43 f4a69a4 bd55f43 f4a69a4 bd55f43 f4a69a4 bd55f43 f4a69a4 bd55f43 f4a69a4 bd55f43 f4a69a4 bd55f43 f4a69a4 bd55f43 f4a69a4 bd55f43 f4a69a4 bd55f43 f4a69a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import os
import numpy as np
import tensorflow as tf
from tqdm import tqdm
import gradio as gr
import typing
from huggingface_hub import HfApi, Repository
import tempfile
# 定义模型和辅助函数
print("Importing necessary libraries and defining functions...")
CONTENT_LAYERS = {'block4_conv2': 0.5, 'block5_conv2': 0.5}
STYLE_LAYERS = {'block1_conv1': 0.2, 'block2_conv1': 0.2, 'block3_conv1': 0.2, 'block4_conv1': 0.2, 'block5_conv1': 0.2}
CONTENT_LOSS_FACTOR = 1
STYLE_LOSS_FACTOR = 100
WIDTH = 450
HEIGHT = 300
EPOCHS = 20
STEPS_PER_EPOCH = 100
LEARNING_RATE = 0.03
image_mean = tf.constant([0.485, 0.456, 0.406])
image_std = tf.constant([0.299, 0.224, 0.225])
def normalization(x):
return (x - image_mean) / image_std
def load_images(image_path, width=WIDTH, height=HEIGHT):
x = tf.io.read_file(image_path)
x = tf.image.decode_jpeg(x, channels=3)
x = tf.image.resize(x, [height, width])
x = x / 255.
x = normalization(x)
x = tf.reshape(x, [1, height, width, 3])
return x
def save_image(image, filename):
x = tf.reshape(image, image.shape[1:])
x = x * image_std + image_mean
x = x * 255.
x = tf.cast(x, tf.int32)
x = tf.clip_by_value(x, 0, 255)
x = tf.cast(x, tf.uint8)
x = tf.image.encode_jpeg(x)
tf.io.write_file(filename, x)
def get_vgg19_model(layers):
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
outputs = [vgg.get_layer(layer).output for layer in layers]
model = tf.keras.Model([vgg.input, ], outputs)
model.trainable = False
return model
class NeuralStyleTransferModel(tf.keras.Model):
def __init__(self, content_layers=CONTENT_LAYERS, style_layers=STYLE_LAYERS):
super(NeuralStyleTransferModel, self).__init__()
self.content_layers = content_layers
self.style_layers = style_layers
layers = list(self.content_layers.keys()) + list(self.style_layers.keys())
self.outputs_index_map = dict(zip(layers, range(len(layers))))
self.vgg = get_vgg19_model(layers)
def call(self, inputs, training=None, mask=None):
outputs = self.vgg(inputs)
content_outputs = []
for layer, factor in self.content_layers.items():
content_outputs.append((outputs[self.outputs_index_map[layer]][0], factor))
style_outputs = []
for layer, factor in self.style_layers.items():
style_outputs.append((outputs[self.outputs_index_map[layer]][0], factor))
return {'content': content_outputs, 'style': style_outputs}
def _compute_content_loss(noise_features, target_features):
content_loss = tf.reduce_sum(tf.square(noise_features - target_features))
x = 2. * WIDTH * HEIGHT * 3
content_loss = content_loss / x
return content_loss
def compute_content_loss(noise_content_features, target_content_features):
content_losses = []
for (noise_feature, factor), (target_feature, _) in zip(noise_content_features, target_content_features):
layer_content_loss = _compute_content_loss(noise_feature, target_feature)
content_losses.append(layer_content_loss * factor)
return tf.reduce_sum(content_losses)
def gram_matrix(feature):
x = tf.transpose(feature, perm=[2, 0, 1])
x = tf.reshape(x, (x.shape[0], -1))
return x @ tf.transpose(x)
def _compute_style_loss(noise_feature, target_feature):
noise_gram_matrix = gram_matrix(noise_feature)
style_gram_matrix = gram_matrix(target_feature)
style_loss = tf.reduce_sum(tf.square(noise_gram_matrix - style_gram_matrix))
x = 4. * (WIDTH * HEIGHT) ** 2 * 3 ** 2
return style_loss / x
def compute_style_loss(noise_style_features, target_style_features):
style_losses = []
for (noise_feature, factor), (target_feature, _) in zip(noise_style_features, target_style_features):
layer_style_loss = _compute_style_loss(noise_feature, target_feature)
style_losses.append(layer_style_loss * factor)
return tf.reduce_sum(style_losses)
def total_loss(noise_features, target_content_features, target_style_features):
content_loss = compute_content_loss(noise_features['content'], target_content_features)
style_loss = compute_style_loss(noise_features['style'], target_style_features)
return content_loss * CONTENT_LOSS_FACTOR + style_loss * STYLE_LOSS_FACTOR
optimizer = tf.keras.optimizers.Adam(LEARNING_RATE)
model = NeuralStyleTransferModel()
def neural_style_transfer(content_image_path, style_image_path):
content_image = load_images(content_image_path)
style_image = load_images(style_image_path)
target_content_features = model([content_image, ])['content']
target_style_features = model([style_image, ])['style']
noise_image = tf.Variable((content_image + np.random.uniform(-0.2, 0.2, (1, HEIGHT, WIDTH, 3))) / 2)
@tf.function
def train_one_step():
with tf.GradientTape() as tape:
noise_outputs = model(noise_image)
loss = total_loss(noise_outputs, target_content_features, target_style_features)
grad = tape.gradient(loss, noise_image)
optimizer.apply_gradients([(grad, noise_image)])
return loss
for epoch in range(EPOCHS):
for step in range(STEPS_PER_EPOCH):
_loss = train_one_step()
output_image_path = tempfile.mktemp(suffix='.jpg')
save_image(noise_image, output_image_path)
return output_image_path
def transfer_style(content_image, style_image):
content_image_path = tempfile.mktemp(suffix='.jpg')
style_image_path = tempfile.mktemp(suffix='.jpg')
content_image.save(content_image_path)
style_image.save(style_image_path)
output_image_path = neural_style_transfer(content_image_path, style_image_path)
return output_image_path
# 创建Gradio界面
iface = gr.Interface(
fn=transfer_style,
inputs=[
gr.inputs.Image(type="pil", label="Content Image"),
gr.inputs.Image(type="pil", label="Style Image")
],
outputs=gr.outputs.Image(type="file", label="Styled Image"),
title="Neural Style Transfer",
description="Upload a content image and a style image to perform neural style transfer."
)
# 运行Gradio应用
iface.launch()
|