Quentin Mace commited on
Commit
9749e52
Β·
1 Parent(s): 9331159

second first commit

Browse files
Files changed (4) hide show
  1. app.py +162 -43
  2. app/utils.py +25 -13
  3. data/dataset_handler.py +35 -0
  4. data/model_handler.py +60 -25
app.py CHANGED
@@ -3,18 +3,36 @@ import gradio as gr
3
  from app.utils import add_rank_and_format, filter_models, get_refresh_function
4
  from data.model_handler import ModelHandler
5
 
6
- METRICS = ["ndcg_at_5", "recall_at_1"]
 
 
 
 
 
 
 
 
 
 
7
 
8
  def main():
9
  model_handler = ModelHandler()
10
  initial_metric = "ndcg_at_5"
11
 
12
- data = model_handler.get_vidore_data(initial_metric)
13
- data = add_rank_and_format(data)
 
 
 
 
14
 
15
- NUM_DATASETS = len(data.columns) - 3
16
- NUM_SCORES = len(data) * NUM_DATASETS
17
- NUM_MODELS = len(data)
 
 
 
 
18
 
19
  css = """
20
  table > thead {
@@ -41,65 +59,167 @@ def main():
41
 
42
  with gr.Blocks(css=css) as block:
43
  with gr.Tabs():
44
- with gr.TabItem("πŸ† Leaderboard"):
45
- gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark πŸ“šπŸ”")
46
- gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models πŸ‘€")
47
 
48
  gr.Markdown(
49
  """
50
- Visual Document Retrieval Benchmark leaderboard. To submit results, refer to the corresponding tab.
51
 
52
- Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
53
  """
54
  )
55
- datasets_columns = list(data.columns[3:])
56
- anchor_columns = list(data.columns[:3])
57
- default_columns = anchor_columns + datasets_columns
58
 
59
  with gr.Row():
60
- metric_dropdown = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
61
- research_textbox = gr.Textbox(placeholder="πŸ” Search Models... [press enter]", label="Filter Models by Name", )
62
- column_checkboxes = gr.CheckboxGroup(choices=datasets_columns, value=default_columns, label="Select Columns to Display")
 
 
 
 
 
63
 
64
  with gr.Row():
65
- datatype = ["number", "markdown"] + ["number"] * (NUM_DATASETS + 1)
66
- dataframe = gr.Dataframe(data, datatype=datatype, type="pandas")
67
 
68
- def update_data(metric, search_term, selected_columns):
69
- data = model_handler.get_vidore_data(metric)
70
- data = add_rank_and_format(data)
 
71
  data = filter_models(data, search_term)
 
72
  if selected_columns:
73
- selected_columns = selected_columns
74
- data = data[selected_columns]
75
  return data
76
 
77
  with gr.Row():
78
- refresh_button = gr.Button("Refresh")
79
- refresh_button.click(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe, concurrency_limit=20)
 
 
 
 
 
80
 
 
 
 
 
 
 
 
81
 
82
  # Automatically refresh the dataframe when the dropdown value changes
83
- metric_dropdown.change(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe)
84
- research_textbox.submit(
85
- lambda metric, search_term, selected_columns: update_data(metric, search_term, selected_columns),
86
- inputs=[metric_dropdown, research_textbox, column_checkboxes],
87
- outputs=dataframe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
  )
89
- column_checkboxes.change(
90
- lambda metric, search_term, selected_columns: update_data(metric, search_term, selected_columns),
91
- inputs=[metric_dropdown, research_textbox, column_checkboxes],
92
- outputs=dataframe
 
 
 
 
 
 
93
  )
 
94
 
95
- #column_checkboxes.change(get_refresh_function(), inputs=[metric_dropdown, column_checkboxes], outputs=dataframe)
 
 
 
 
 
 
 
 
96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
  gr.Markdown(
99
  f"""
100
- - **Total Datasets**: {NUM_DATASETS}
101
- - **Total Scores**: {NUM_SCORES}
102
- - **Total Models**: {NUM_MODELS}
103
  """
104
  + r"""
105
  Please consider citing:
@@ -143,8 +263,8 @@ def main():
143
  },
144
  }
145
  ```
146
- - The dataset names should be the same as the ViDoRe dataset names listed in the following
147
- collection: [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d).
148
 
149
  3. **Submit your model**:
150
  - Create a public HuggingFace model repository with your model.
@@ -162,6 +282,5 @@ def main():
162
  block.queue(max_size=10).launch(debug=True)
163
 
164
 
165
- if __name__ == "__main__":
166
  main()
167
-
 
3
  from app.utils import add_rank_and_format, filter_models, get_refresh_function
4
  from data.model_handler import ModelHandler
5
 
6
+ METRICS = [
7
+ "ndcg_at_1",
8
+ "ndcg_at_5",
9
+ "ndcg_at_10",
10
+ "ndcg_at_100",
11
+ "recall_at_1",
12
+ "recall_at_5",
13
+ "recall_at_10",
14
+ "recall_at_100",
15
+ ]
16
+
17
 
18
  def main():
19
  model_handler = ModelHandler()
20
  initial_metric = "ndcg_at_5"
21
 
22
+ model_handler.get_vidore_data(initial_metric)
23
+ data_benchmark_1 = model_handler.compute_averages(initial_metric, benchmark_version=1)
24
+ data_benchmark_1 = add_rank_and_format(data_benchmark_1, benchmark_version=1)
25
+
26
+ data_benchmark_2 = model_handler.compute_averages(initial_metric, benchmark_version=2)
27
+ data_benchmark_2 = add_rank_and_format(data_benchmark_2, benchmark_version=2)
28
 
29
+ NUM_DATASETS_1 = len(data_benchmark_1.columns) - 3
30
+ NUM_SCORES_1 = len(data_benchmark_1) * NUM_DATASETS_1
31
+ NUM_MODELS_1 = len(data_benchmark_1)
32
+
33
+ NUM_DATASETS_2 = len(data_benchmark_2.columns) - 3
34
+ NUM_SCORES_2 = len(data_benchmark_2) * NUM_DATASETS_2
35
+ NUM_MODELS_2 = len(data_benchmark_2)
36
 
37
  css = """
38
  table > thead {
 
59
 
60
  with gr.Blocks(css=css) as block:
61
  with gr.Tabs():
62
+ with gr.TabItem("πŸ† Leaderboard Benchmark 2"):
63
+ gr.Markdown("# ViDoRe 2: A new visual Document Retrieval Benchmark πŸ“šπŸ”")
64
+ gr.Markdown("### A harder dataset benchmark for visual document retrieval πŸ‘€")
65
 
66
  gr.Markdown(
67
  """
68
+ Visual Document Retrieval Benchmark 2 leaderboard. To submit results, refer to the corresponding tab.
69
 
70
+ Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models.
71
  """
72
  )
73
+ datasets_columns_2 = list(data_benchmark_2.columns[3:])
 
 
74
 
75
  with gr.Row():
76
+ metric_dropdown_2 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
77
+ research_textbox_2 = gr.Textbox(
78
+ placeholder="πŸ” Search Models... [press enter]",
79
+ label="Filter Models by Name",
80
+ )
81
+ column_checkboxes_2 = gr.CheckboxGroup(
82
+ choices=datasets_columns_2, value=datasets_columns_2, label="Select Columns to Display"
83
+ )
84
 
85
  with gr.Row():
86
+ datatype_2 = ["number", "markdown"] + ["number"] * (NUM_DATASETS_2 + 1)
87
+ dataframe_2 = gr.Dataframe(data_benchmark_2, datatype=datatype_2, type="pandas")
88
 
89
+ def update_data_2(metric, search_term, selected_columns):
90
+ model_handler.get_vidore_data(metric)
91
+ data = model_handler.compute_averages(metric, benchmark_version=2)
92
+ data = add_rank_and_format(data, benchmark_version=2)
93
  data = filter_models(data, search_term)
94
+ # data = remove_duplicates(data) # Add this line
95
  if selected_columns:
96
+ data = data[["Rank", "Model", "Average"] + selected_columns]
 
97
  return data
98
 
99
  with gr.Row():
100
+ refresh_button_2 = gr.Button("Refresh")
101
+ refresh_button_2.click(
102
+ get_refresh_function(model_handler, benchmark_version=2),
103
+ inputs=[metric_dropdown_2],
104
+ outputs=dataframe_2,
105
+ concurrency_limit=20,
106
+ )
107
 
108
+ with gr.Row():
109
+ gr.Markdown(
110
+ """
111
+ **Note**: For now, all models were evaluated using the vidore-benchmark package and custom retrievers on our side.
112
+ Those numbers are not numbers obtained from the organisations that released those models.
113
+ """
114
+ )
115
 
116
  # Automatically refresh the dataframe when the dropdown value changes
117
+ metric_dropdown_2.change(
118
+ get_refresh_function(model_handler, benchmark_version=2),
119
+ inputs=[metric_dropdown_2],
120
+ outputs=dataframe_2,
121
+ )
122
+ research_textbox_2.submit(
123
+ lambda metric, search_term, selected_columns: update_data_2(metric, search_term, selected_columns),
124
+ inputs=[metric_dropdown_2, research_textbox_2, column_checkboxes_2],
125
+ outputs=dataframe_2,
126
+ )
127
+ column_checkboxes_2.change(
128
+ lambda metric, search_term, selected_columns: update_data_2(metric, search_term, selected_columns),
129
+ inputs=[metric_dropdown_2, research_textbox_2, column_checkboxes_2],
130
+ outputs=dataframe_2,
131
+ )
132
+
133
+ gr.Markdown(
134
+ f"""
135
+ - **Total Datasets**: {NUM_DATASETS_2}
136
+ - **Total Scores**: {NUM_SCORES_2}
137
+ - **Total Models**: {NUM_MODELS_2}
138
+ """
139
+ + r"""
140
+ Please consider citing:
141
+
142
+ ```bibtex
143
+ @misc{faysse2024colpaliefficientdocumentretrieval,
144
+ title={ColPali: Efficient Document Retrieval with Vision Language Models},
145
+ author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and CΓ©line Hudelot and Pierre Colombo},
146
+ year={2024},
147
+ eprint={2407.01449},
148
+ archivePrefix={arXiv},
149
+ primaryClass={cs.IR},
150
+ url={https://arxiv.org/abs/2407.01449},
151
+ }
152
+ ```
153
+ """
154
  )
155
+ with gr.TabItem("πŸ† Leaderboard Benchmark 1"):
156
+ gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark 1 πŸ“šπŸ”")
157
+ gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models πŸ‘€")
158
+
159
+ gr.Markdown(
160
+ """
161
+ Visual Document Retrieval Benchmark 1 leaderboard. To submit results, refer to the corresponding tab.
162
+
163
+ Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
164
+ """
165
  )
166
+ datasets_columns_1 = list(data_benchmark_1.columns[3:])
167
 
168
+ with gr.Row():
169
+ metric_dropdown_1 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
170
+ research_textbox_1 = gr.Textbox(
171
+ placeholder="πŸ” Search Models... [press enter]",
172
+ label="Filter Models by Name",
173
+ )
174
+ column_checkboxes_1 = gr.CheckboxGroup(
175
+ choices=datasets_columns_1, value=datasets_columns_1, label="Select Columns to Display"
176
+ )
177
 
178
+ with gr.Row():
179
+ datatype_1 = ["number", "markdown"] + ["number"] * (NUM_DATASETS_1 + 1)
180
+ dataframe_1 = gr.Dataframe(data_benchmark_1, datatype=datatype_1, type="pandas")
181
+
182
+ def update_data_1(metric, search_term, selected_columns):
183
+ model_handler.get_vidore_data(metric)
184
+ data = model_handler.compute_averages(metric, benchmark_version=1)
185
+ data = add_rank_and_format(data, benchmark_version=1)
186
+ data = filter_models(data, search_term)
187
+ # data = remove_duplicates(data) # Add this line
188
+ if selected_columns:
189
+ data = data[["Rank", "Model", "Average"] + selected_columns]
190
+ return data
191
+
192
+ with gr.Row():
193
+ refresh_button_1 = gr.Button("Refresh")
194
+ refresh_button_1.click(
195
+ get_refresh_function(model_handler, benchmark_version=1),
196
+ inputs=[metric_dropdown_1],
197
+ outputs=dataframe_1,
198
+ concurrency_limit=20,
199
+ )
200
+
201
+ # Automatically refresh the dataframe when the dropdown value changes
202
+ metric_dropdown_1.change(
203
+ get_refresh_function(model_handler, benchmark_version=1),
204
+ inputs=[metric_dropdown_1],
205
+ outputs=dataframe_1,
206
+ )
207
+ research_textbox_1.submit(
208
+ lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
209
+ inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
210
+ outputs=dataframe_1,
211
+ )
212
+ column_checkboxes_1.change(
213
+ lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns),
214
+ inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1],
215
+ outputs=dataframe_1,
216
+ )
217
 
218
  gr.Markdown(
219
  f"""
220
+ - **Total Datasets**: {NUM_DATASETS_1}
221
+ - **Total Scores**: {NUM_SCORES_1}
222
+ - **Total Models**: {NUM_MODELS_1}
223
  """
224
  + r"""
225
  Please consider citing:
 
263
  },
264
  }
265
  ```
266
+ - The dataset names should be the same as the ViDoRe and ViDoRe 2 dataset names listed in the following
267
+ collections: [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and [ViDoRe Benchmark 2](vidore/vidore-benchmark-v2-dev-67ae03e3924e85b36e7f53b0).
268
 
269
  3. **Submit your model**:
270
  - Create a public HuggingFace model repository with your model.
 
282
  block.queue(max_size=10).launch(debug=True)
283
 
284
 
285
+ if __name__ == "__main__":
286
  main()
 
app/utils.py CHANGED
@@ -1,31 +1,43 @@
1
  from data.model_handler import ModelHandler
2
 
 
3
  def make_clickable_model(model_name, link=None):
4
  if link is None:
5
  desanitized_model_name = model_name.replace("_", "/")
 
6
 
7
- if '/captioning' in desanitized_model_name:
8
- desanitized_model_name = desanitized_model_name.replace('/captioning', '')
9
- if '/ocr' in desanitized_model_name:
10
- desanitized_model_name = desanitized_model_name.replace('/ocr', '')
11
 
12
  link = "https://huggingface.co/" + desanitized_model_name
13
 
14
- return f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_name}</a>'
15
 
16
 
17
- def add_rank_and_format(df):
18
  df = df.reset_index()
19
  df = df.rename(columns={"index": "Model"})
20
- df = ModelHandler.add_rank(df)
21
  df["Model"] = df["Model"].apply(make_clickable_model)
 
22
  return df
23
 
24
- def get_refresh_function():
 
 
 
 
 
 
 
 
 
25
  def _refresh(metric):
26
- model_handler = ModelHandler()
27
- data_task_category = model_handler.get_vidore_data(metric)
28
- df = add_rank_and_format(data_task_category)
29
  return df
30
 
31
  return _refresh
@@ -33,5 +45,5 @@ def get_refresh_function():
33
 
34
  def filter_models(data, search_term):
35
  if search_term:
36
- data = data[data['Model'].str.contains(search_term, case=False, na=False)]
37
- return data
 
1
  from data.model_handler import ModelHandler
2
 
3
+
4
  def make_clickable_model(model_name, link=None):
5
  if link is None:
6
  desanitized_model_name = model_name.replace("_", "/")
7
+ desanitized_model_name = desanitized_model_name.replace("-thisisapoint-", ".")
8
 
9
+ if "/captioning" in desanitized_model_name:
10
+ desanitized_model_name = desanitized_model_name.replace("/captioning", "")
11
+ if "/ocr" in desanitized_model_name:
12
+ desanitized_model_name = desanitized_model_name.replace("/ocr", "")
13
 
14
  link = "https://huggingface.co/" + desanitized_model_name
15
 
16
+ return f'<a target="_blank" style="text-decoration: underline" href="{link}">{desanitized_model_name}</a>'
17
 
18
 
19
+ def add_rank_and_format(df, benchmark_version=1):
20
  df = df.reset_index()
21
  df = df.rename(columns={"index": "Model"})
22
+ df = ModelHandler.add_rank(df, benchmark_version)
23
  df["Model"] = df["Model"].apply(make_clickable_model)
24
+ # df = remove_duplicates(df)
25
  return df
26
 
27
+
28
+ def remove_duplicates(df):
29
+ """Remove duplicate models based on their name (after the last '/' if present)."""
30
+ df["model_name"] = df["Model"].str.replace("_", "/")
31
+ df = df.sort_values("Rank").drop_duplicates(subset=["model_name"], keep="first")
32
+ df = df.drop("model_name", axis=1)
33
+ return df
34
+
35
+
36
+ def get_refresh_function(model_handler, benchmark_version):
37
  def _refresh(metric):
38
+ model_handler.get_vidore_data(metric)
39
+ data_task_category = model_handler.compute_averages(metric, benchmark_version)
40
+ df = add_rank_and_format(data_task_category, benchmark_version)
41
  return df
42
 
43
  return _refresh
 
45
 
46
  def filter_models(data, search_term):
47
  if search_term:
48
+ data = data[data["Model"].str.contains(search_term, case=False, na=False)]
49
+ return data
data/dataset_handler.py CHANGED
@@ -11,6 +11,14 @@ VIDORE_DATASETS_KEYWORDS = [
11
  "healthcare_industry",
12
  ]
13
 
 
 
 
 
 
 
 
 
14
 
15
  def get_datasets_nickname(dataset_name) -> str:
16
  if "arxivqa" in dataset_name:
@@ -41,5 +49,32 @@ def get_datasets_nickname(dataset_name) -> str:
41
  elif "healthcare_industry" in dataset_name:
42
  return "Healthcare Industry"
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  else:
45
  raise ValueError(f"Dataset {dataset_name} not found in ViDoRe")
 
11
  "healthcare_industry",
12
  ]
13
 
14
+ VIDORE_2_DATASETS_KEYWORDS = [
15
+ "restaurant_esg",
16
+ "rse_restaurant",
17
+ "axa",
18
+ "mit_biomedical",
19
+ "economics_macro",
20
+ ]
21
+
22
 
23
  def get_datasets_nickname(dataset_name) -> str:
24
  if "arxivqa" in dataset_name:
 
49
  elif "healthcare_industry" in dataset_name:
50
  return "Healthcare Industry"
51
 
52
+ elif "restaurant_esg" in dataset_name:
53
+ return "ESG Restaurant Human"
54
+
55
+ elif "rse_restaurant" in dataset_name and "multilingual" in dataset_name:
56
+ return "ESG Restaurant Synthetic Multilingual"
57
+
58
+ elif "rse_restaurant" in dataset_name:
59
+ return "ESG Restaurant Synthetic"
60
+
61
+ elif "axa" in dataset_name and "multilingual" in dataset_name:
62
+ return "AXA Multilingual"
63
+
64
+ elif "axa" in dataset_name:
65
+ return "AXA"
66
+
67
+ elif "mit_biomedical" in dataset_name and "multilingual" in dataset_name:
68
+ return "MIT Biomedical Multilingual"
69
+
70
+ elif "mit_biomedical" in dataset_name:
71
+ return "MIT Biomedical"
72
+
73
+ elif "economics_macro" in dataset_name and "multilingual" in dataset_name:
74
+ return "Economics Macro Multilingual"
75
+
76
+ elif "economics_macro" in dataset_name:
77
+ return "Economics Macro"
78
+
79
  else:
80
  raise ValueError(f"Dataset {dataset_name} not found in ViDoRe")
data/model_handler.py CHANGED
@@ -5,7 +5,7 @@ from typing import Any, Dict
5
  import pandas as pd
6
  from huggingface_hub import HfApi, hf_hub_download, metadata_load
7
 
8
- from .dataset_handler import VIDORE_DATASETS_KEYWORDS, get_datasets_nickname
9
 
10
  BLOCKLIST = ["impactframes"]
11
 
@@ -29,15 +29,30 @@ class ModelHandler:
29
  def _are_results_in_new_vidore_format(self, results: Dict[str, Any]) -> bool:
30
  return "metadata" in results and "metrics" in results
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  def get_vidore_data(self, metric="ndcg_at_5"):
33
  models = self.api.list_models(filter="vidore")
34
  repositories = [model.modelId for model in models] # type: ignore
35
 
 
 
 
36
  for repo_id in repositories:
37
  org_name = repo_id.split("/")[0]
38
  if org_name in BLOCKLIST:
39
  continue
40
-
41
  files = [f for f in self.api.list_repo_files(repo_id) if f.endswith("_metrics.json") or f == "results.json"]
42
 
43
  if len(files) == 0:
@@ -45,39 +60,58 @@ class ModelHandler:
45
  else:
46
  for file in files:
47
  if file.endswith("results.json"):
48
- model_name = repo_id.replace("/", "_")
49
  else:
50
  model_name = file.split("_metrics.json")[0]
 
51
 
52
- if model_name not in self.model_infos:
53
- readme_path = hf_hub_download(repo_id, filename="README.md")
54
- meta = metadata_load(readme_path)
55
- try:
56
- result_path = hf_hub_download(repo_id, filename=file)
57
 
58
- with open(result_path) as f:
59
- results = json.load(f)
 
 
60
 
61
- if self._are_results_in_new_vidore_format(results):
62
- metadata = results["metadata"]
63
- results = results["metrics"]
64
 
65
- self.model_infos[model_name] = {"meta": meta, "results": results}
66
- except Exception as e:
67
- print(f"Error loading {model_name} - {e}")
68
- continue
69
 
70
- # self._save_model_infos()
 
 
 
71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  model_res = {}
73
- if len(self.model_infos) > 0:
74
- for model in self.model_infos.keys():
75
- res = self.model_infos[model]["results"]
 
76
  dataset_res = {}
 
77
  for dataset in res.keys():
78
- # for each keyword check if it is in the dataset name if not continue
79
- if not any(keyword in dataset for keyword in VIDORE_DATASETS_KEYWORDS):
80
- print(f"{dataset} not found in ViDoRe datasets. Skipping ...")
81
  continue
82
 
83
  dataset_nickname = get_datasets_nickname(dataset)
@@ -90,7 +124,7 @@ class ModelHandler:
90
  return pd.DataFrame()
91
 
92
  @staticmethod
93
- def add_rank(df):
94
  df.fillna(0.0, inplace=True)
95
  cols_to_rank = [
96
  col
@@ -104,6 +138,7 @@ class ModelHandler:
104
  "Max Tokens",
105
  ]
106
  ]
 
107
  if len(cols_to_rank) == 1:
108
  df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
109
  else:
 
5
  import pandas as pd
6
  from huggingface_hub import HfApi, hf_hub_download, metadata_load
7
 
8
+ from .dataset_handler import VIDORE_2_DATASETS_KEYWORDS, VIDORE_DATASETS_KEYWORDS, get_datasets_nickname
9
 
10
  BLOCKLIST = ["impactframes"]
11
 
 
29
  def _are_results_in_new_vidore_format(self, results: Dict[str, Any]) -> bool:
30
  return "metadata" in results and "metrics" in results
31
 
32
+ def _is_baseline_repo(self, repo_id: str) -> bool:
33
+ return repo_id == "vidore/baseline-results"
34
+
35
+ def sanitize_model_name(self, model_name):
36
+ return model_name.replace("/", "_").replace(".", "-thisisapoint-")
37
+
38
+ def fuze_model_infos(self, model_name, results):
39
+ for dataset, metrics in results.items():
40
+ if dataset not in self.model_infos[model_name]["results"].keys():
41
+ self.model_infos[model_name]["results"][dataset] = metrics
42
+ else:
43
+ continue
44
+
45
  def get_vidore_data(self, metric="ndcg_at_5"):
46
  models = self.api.list_models(filter="vidore")
47
  repositories = [model.modelId for model in models] # type: ignore
48
 
49
+ # Sort repositories to process non-baseline repos first (to prioritize their results)
50
+ repositories.sort(key=lambda x: self._is_baseline_repo(x))
51
+
52
  for repo_id in repositories:
53
  org_name = repo_id.split("/")[0]
54
  if org_name in BLOCKLIST:
55
  continue
 
56
  files = [f for f in self.api.list_repo_files(repo_id) if f.endswith("_metrics.json") or f == "results.json"]
57
 
58
  if len(files) == 0:
 
60
  else:
61
  for file in files:
62
  if file.endswith("results.json"):
63
+ model_name = repo_id.replace("/", "_").replace(".", "-thisisapoint-")
64
  else:
65
  model_name = file.split("_metrics.json")[0]
66
+ model_name = model_name.replace("/", "_").replace(".", "-thisisapoint-")
67
 
68
+ # Skip if the model is from baseline and we already have results
 
 
 
 
69
 
70
+ readme_path = hf_hub_download(repo_id, filename="README.md")
71
+ meta = metadata_load(readme_path)
72
+ try:
73
+ result_path = hf_hub_download(repo_id, filename=file)
74
 
75
+ with open(result_path) as f:
76
+ results = json.load(f)
 
77
 
78
+ if self._are_results_in_new_vidore_format(results):
79
+ metadata = results["metadata"]
80
+ results = results["metrics"]
 
81
 
82
+ # Handles the case where the model is both in baseline and outside of it
83
+ # (prioritizes the non-baseline results)
84
+ if self._is_baseline_repo(repo_id) and self.sanitize_model_name(model_name) in self.model_infos:
85
+ self.fuze_model_infos(model_name, results)
86
 
87
+ self.model_infos[model_name] = {"meta": meta, "results": results}
88
+ except Exception as e:
89
+ print(f"Error loading {model_name} - {e}")
90
+ continue
91
+
92
+ # In order to keep only models relevant to a benchmark
93
+ def filter_models_by_benchmark(self, benchmark_version=1):
94
+ filtered_model_infos = {}
95
+ keywords = VIDORE_DATASETS_KEYWORDS if benchmark_version == 1 else VIDORE_2_DATASETS_KEYWORDS
96
+
97
+ for model, info in self.model_infos.items():
98
+ results = info["results"]
99
+ if any(any(keyword in dataset for keyword in keywords) for dataset in results.keys()):
100
+ filtered_model_infos[model] = info
101
+
102
+ return filtered_model_infos
103
+
104
+ # Compute the average of a metric for each model,
105
+ def compute_averages(self, metric="ndcg_at_5", benchmark_version=1):
106
  model_res = {}
107
+ filtered_model_infos = self.filter_models_by_benchmark(benchmark_version)
108
+ if len(filtered_model_infos) > 0:
109
+ for model in filtered_model_infos.keys():
110
+ res = filtered_model_infos[model]["results"]
111
  dataset_res = {}
112
+ keywords = VIDORE_DATASETS_KEYWORDS if benchmark_version == 1 else VIDORE_2_DATASETS_KEYWORDS
113
  for dataset in res.keys():
114
+ if not any(keyword in dataset for keyword in keywords):
 
 
115
  continue
116
 
117
  dataset_nickname = get_datasets_nickname(dataset)
 
124
  return pd.DataFrame()
125
 
126
  @staticmethod
127
+ def add_rank(df, benchmark_version=1):
128
  df.fillna(0.0, inplace=True)
129
  cols_to_rank = [
130
  col
 
138
  "Max Tokens",
139
  ]
140
  ]
141
+
142
  if len(cols_to_rank) == 1:
143
  df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
144
  else: