import gradio as gr | |
from transformers import M2M100ForConditionalGeneration | |
from tokenization_small100 import SMALL100Tokenizer | |
langs = """af,am,ar,ast,az,ba,be,bg,bn,br,bs,ca,ceb,cs,cy,da,de,el,en,es,et,fa,ff,fi,fr,fy,ga,gd,gl,gu,ha,he,hi,hr,ht,hu,hy,id,ig,ilo,is,it,ja,jv,ka,kk,km,kn,ko,lb,lg,ln,lo,lt,lv,mg,mk,ml,mn,mr,ms,my,ne,nl,no,ns,oc,or,pa,pl,ps,pt,ro,ru,sd,si,sk,sl,so,sq,sr,ss,su,sv,sw,ta,th,tl,tn,tr,uk,ur,uz,vi,wo,xh,yi,yo,zh,zu""" | |
lang_list = langs.split(',') | |
model = M2M100ForConditionalGeneration.from_pretrained("alirezamsh/small100") | |
tokenizer = SMALL100Tokenizer.from_pretrained("alirezamsh/small100") | |
def translate(lang, text): | |
tokenizer.tgt_lang = lang | |
encoded_text = tokenizer(text, return_tensors="pt") | |
generated_tokens = model.generate(**encoded_text) | |
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] | |
with gr.Blocks(analytics_enabled=False) as app: | |
Source = gr.Textbox( label="Source" ) | |
Language = gr.Dropdown( lang_list, label="Language" ) | |
Translate = gr.Button( "Translate" ) | |
Result = gr.Textbox( label="Result" ) | |
Info = gr.Markdown( "# [$hyoo_lingua](https://lingua.hyoo.ru/)" ) | |
Translate.click( | |
translate, | |
inputs=[ Language, Source ], | |
outputs=[Result], | |
api_name="translate", | |
) | |
app.launch( inline=True ) | |
block.queue( concurrency_count=2 ) | |