|
from contextlib import nullcontext |
|
import gradio as gr |
|
from torch import autocast |
|
from removebg import RemoveBg |
|
import os |
|
import torch |
|
|
|
import PIL |
|
from PIL import Image |
|
|
|
from diffusers import StableDiffusionPipeline |
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer |
|
|
|
def image_grid(imgs, rows, cols): |
|
assert len(imgs) == rows*cols |
|
|
|
w, h = imgs[0].size |
|
grid = Image.new('RGB', size=(cols*w, rows*h)) |
|
grid_w, grid_h = grid.size |
|
|
|
for i, img in enumerate(imgs): |
|
grid.paste(img, box=(i%cols*w, i//cols*h)) |
|
return grid |
|
|
|
pretrained_model_name_or_path = "vmanot/valiant-effort-one" |
|
|
|
tokenizer = CLIPTokenizer.from_pretrained( |
|
pretrained_model_name_or_path, |
|
subfolder="tokenizer", |
|
) |
|
text_encoder = CLIPTextModel.from_pretrained( |
|
pretrained_model_name_or_path, subfolder="text_encoder", torch_dtype=torch.float16 |
|
) |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
context = autocast if device == "cuda" else nullcontext |
|
dtype = torch.float16 if device == "cuda" else torch.float32 |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
pretrained_model_name_or_path, |
|
revision="main", |
|
torch_dtype=torch.float16, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
).to("cuda") |
|
|
|
disable_safety = True |
|
|
|
if disable_safety: |
|
def null_safety(images, **kwargs): |
|
return images, False |
|
pipe.safety_checker = null_safety |
|
|
|
|
|
num_samples = 2 |
|
num_rows = 2 |
|
|
|
def infer(prompt, n_samples, steps, scale): |
|
i = 0 |
|
with context("cuda"): |
|
images = pipe(n_samples*[prompt], guidance_scale=scale, num_inference_steps=steps).images |
|
return images |
|
|
|
css = """ |
|
a { |
|
color: inherit; |
|
text-decoration: underline; |
|
} |
|
.gradio-container { |
|
font-family: 'IBM Plex Sans', sans-serif; |
|
} |
|
.gr-button { |
|
color: white; |
|
border-color: #9d66e5; |
|
background: #9d66e5; |
|
} |
|
input[type='range'] { |
|
accent-color: green; |
|
} |
|
.dark input[type='range'] { |
|
accent-color: green; |
|
} |
|
.container { |
|
max-width: 500px; |
|
margin-left: 200px; |
|
padding-top: 1.5rem; |
|
} |
|
#gallery { |
|
min-height: 22rem; |
|
margin-bottom: 15px; |
|
margin-left: auto; |
|
margin-right: auto; |
|
border-bottom-right-radius: .5rem !important; |
|
border-bottom-left-radius: .5rem !important; |
|
} |
|
#gallery>div>.h-full { |
|
min-height: 20rem; |
|
} |
|
.details:hover { |
|
text-decoration: underline; |
|
} |
|
.gr-button { |
|
white-space: nowrap; |
|
} |
|
.gr-button:focus { |
|
border-color: rgb(147 197 253 / var(--tw-border-opacity)); |
|
outline: none; |
|
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); |
|
--tw-border-opacity: 1; |
|
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); |
|
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); |
|
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); |
|
--tw-ring-opacity: .5; |
|
} |
|
#advanced-options { |
|
margin-bottom: 20px; |
|
} |
|
.dark { filter: invert(1); } |
|
.dark { |
|
border-color: #303030; |
|
} |
|
.dark { |
|
background: #0b0f19; |
|
} |
|
.acknowledgments h4{ |
|
margin: 1.25em 0 .25em 0; |
|
font-weight: bold; |
|
font-size: 115%; |
|
} |
|
""" |
|
|
|
block = gr.Blocks(css=css) |
|
|
|
examples = [ |
|
[ |
|
'Yoda', |
|
2, |
|
7.5, |
|
], |
|
[ |
|
'Abraham Lincoln', |
|
2, |
|
7.5, |
|
], |
|
[ |
|
'George Washington', |
|
2, |
|
7, |
|
], |
|
] |
|
|
|
with block: |
|
gr.HTML( |
|
""" |
|
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> |
|
</div> |
|
""" |
|
) |
|
with gr.Group(): |
|
with gr.Box(): |
|
with gr.Row().style(mobile_collapse=False, equal_height=True): |
|
text = gr.Textbox( |
|
label="Enter your prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
).style( |
|
border=(True, False, True, True), |
|
rounded=(True, False, False, True), |
|
container=False, |
|
) |
|
btn = gr.Button("Generate image").style( |
|
margin=False, |
|
rounded=(False, True, True, False), |
|
) |
|
|
|
gallery = gr.Gallery( |
|
label="Generated images", show_label=False, elem_id="gallery" |
|
).style(grid=[2], height="auto") |
|
|
|
|
|
with gr.Row(elem_id="advanced-options"): |
|
samples = gr.Slider(label="Images", minimum=1, maximum=4, value=2, step=1) |
|
steps = gr.Slider(label="Steps", minimum=5, maximum=50, value=25, step=5) |
|
scale = gr.Slider( |
|
label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1 |
|
) |
|
|
|
|
|
ex = gr.Examples(examples=examples, fn=infer, inputs=[text, samples, scale], outputs=gallery, cache_examples=False) |
|
ex.dataset.headers = [""] |
|
|
|
|
|
text.submit(infer, inputs=[text, samples, steps, scale], outputs=gallery) |
|
btn.click(infer, inputs=[text, samples, steps, scale], outputs=gallery) |
|
|
|
block.launch(debug=True) |