protobench / models.py
vtrv.vls
API fix
6f92fa3
raw
history blame
1.81 kB
import torch
from transformers import pipeline
def get_tinyllama():
tinyllama = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.float16, device_map="auto")
return tinyllama
def get_qwen2ins1b():
tinyllama = pipeline("text-generation", model="Qwen/Qwen2-1.5B-Instruct", torch_dtype=torch.float16, device_map="auto")
return tinyllama
def response_tinyllama(
model=None,
messages=None
):
messages_dict = [
{
"role": "system",
"content": "You are a friendly and helpful chatbot",
}
]
for step in messages:
messages_dict.append({'role': 'user', 'content': step[0]})
if len(step) >= 2:
messages_dict.append({'role': 'assistant', 'content': step[1]})
prompt = model.tokenizer.apply_chat_template(messages_dict, tokenize=False, add_generation_prompt=True)
outputs = model(prompt, max_new_tokens=64, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
return outputs[0]['generated_text'].split('<|assistant|>')[1].strip()
def response_qwen2ins1b(
model=None,
messages=None
):
messages_dict = [
{
"role": "system",
"content": "You are a friendly and helpful chatbot",
}
]
for step in messages:
messages_dict.append({'role': 'user', 'content': step[0]})
if len(step) >= 2:
messages_dict.append({'role': 'assistant', 'content': step[1]})
prompt = model.tokenizer.apply_chat_template(messages_dict, tokenize=False, add_generation_prompt=True)
outputs = model(prompt, max_new_tokens=64, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
return outputs[0]['generated_text'] #.split('<|assistant|>')[1].strip()