Spaces:
Sleeping
Sleeping
pytorch lightning removal
Browse files- app.py +5 -6
- model.py +0 -118
- requirements.txt +0 -1
- resnet.pth → resnet18.pth +2 -2
app.py
CHANGED
@@ -1,20 +1,19 @@
|
|
1 |
import operator
|
2 |
import torch
|
3 |
-
from torchvision import transforms
|
4 |
import gradio as gr
|
5 |
from pytorch_grad_cam import GradCAM
|
6 |
from pytorch_grad_cam.utils.image import show_cam_on_image
|
7 |
import gradio as gr
|
8 |
-
import model
|
9 |
from data_loader import CIFAR_CLASS_LABELS, TEST_TRANSFORM
|
10 |
import matplotlib
|
|
|
11 |
matplotlib.use('agg')
|
12 |
from matplotlib import pyplot as plt
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
resnet_18_model
|
18 |
|
19 |
classes = ('plane', 'car', 'bird', 'cat', 'deer',
|
20 |
'dog', 'frog', 'horse', 'ship', 'truck')
|
|
|
1 |
import operator
|
2 |
import torch
|
|
|
3 |
import gradio as gr
|
4 |
from pytorch_grad_cam import GradCAM
|
5 |
from pytorch_grad_cam.utils.image import show_cam_on_image
|
6 |
import gradio as gr
|
|
|
7 |
from data_loader import CIFAR_CLASS_LABELS, TEST_TRANSFORM
|
8 |
import matplotlib
|
9 |
+
from model import ResNet18
|
10 |
matplotlib.use('agg')
|
11 |
from matplotlib import pyplot as plt
|
12 |
|
13 |
+
|
14 |
+
resnet_18_model = ResNet18()
|
15 |
+
resnet_18_model.load_state_dict(torch.load('resnet18.pth'))
|
16 |
+
resnet_18_model.eval()
|
17 |
|
18 |
classes = ('plane', 'car', 'bird', 'cat', 'deer',
|
19 |
'dog', 'frog', 'horse', 'ship', 'truck')
|
model.py
CHANGED
@@ -79,121 +79,3 @@ class ResNet(nn.Module):
|
|
79 |
def ResNet18():
|
80 |
return ResNet(BasicBlock, [2, 2, 2, 2])
|
81 |
|
82 |
-
import torch.nn as nn
|
83 |
-
from torch.optim.lr_scheduler import OneCycleLR
|
84 |
-
from torch.utils.data import DataLoader
|
85 |
-
import matplotlib.pyplot as plt
|
86 |
-
|
87 |
-
from data_loader import CifarAlbumentationsDataset,\
|
88 |
-
CIFAR_CLASS_LABELS, TRAIN_TRANSFORM, TEST_TRANSFORM
|
89 |
-
import model
|
90 |
-
from torch_lr_finder import LRFinder
|
91 |
-
|
92 |
-
import torch
|
93 |
-
import torch.nn as nn
|
94 |
-
import torch.nn.functional as F
|
95 |
-
from pytorch_lightning import LightningModule
|
96 |
-
from torch.optim.lr_scheduler import OneCycleLR
|
97 |
-
from torchmetrics.functional import accuracy
|
98 |
-
|
99 |
-
class LitResnet(LightningModule):
|
100 |
-
def __init__(self, lr=0.03, batch_size=512):
|
101 |
-
super().__init__()
|
102 |
-
|
103 |
-
self.save_hyperparameters()
|
104 |
-
self.criterion = nn.CrossEntropyLoss()
|
105 |
-
self.model = ResNet18()
|
106 |
-
|
107 |
-
def forward(self, x):
|
108 |
-
return self.model(x)
|
109 |
-
|
110 |
-
def training_step(self, batch, batch_idx):
|
111 |
-
x, y = batch
|
112 |
-
output = self.forward(x)
|
113 |
-
loss = self.criterion(output, y)
|
114 |
-
self.log("train_loss", loss)
|
115 |
-
acc = accuracy(torch.argmax(output, dim=1),
|
116 |
-
y, 'multiclass', num_classes=10)
|
117 |
-
self.log(f"train_acc", acc, prog_bar=True)
|
118 |
-
return loss
|
119 |
-
|
120 |
-
def evaluate(self, batch, stage=None):
|
121 |
-
x, y = batch
|
122 |
-
output = self.forward(x)
|
123 |
-
loss = self.criterion(output, y)
|
124 |
-
preds = torch.argmax(output, dim=1)
|
125 |
-
acc = accuracy(preds, y, 'multiclass', num_classes=10)
|
126 |
-
|
127 |
-
if stage:
|
128 |
-
self.log(f"{stage}_loss", loss, prog_bar=True)
|
129 |
-
self.log(f"{stage}_acc", acc, prog_bar=True)
|
130 |
-
|
131 |
-
def validation_step(self, batch, batch_idx):
|
132 |
-
self.evaluate(batch, "val")
|
133 |
-
|
134 |
-
def test_step(self, batch, batch_idx):
|
135 |
-
self.evaluate(batch, "test")
|
136 |
-
|
137 |
-
# todo
|
138 |
-
# change the default for num_iter
|
139 |
-
def lr_finder(self, optimizer, num_iter=200,):
|
140 |
-
lr_finder = LRFinder(self, optimizer, self.criterion,
|
141 |
-
device=self.device)
|
142 |
-
lr_finder.range_test(
|
143 |
-
self.train_dataloader(), end_lr=1,
|
144 |
-
num_iter=num_iter, step_mode='exp',
|
145 |
-
)
|
146 |
-
ax, suggested_lr = lr_finder.plot(suggest_lr=True)
|
147 |
-
# todo
|
148 |
-
# how to log maplotlib images
|
149 |
-
# self.logger.experiment.add_image('lr_finder', plt.gcf(), 0)
|
150 |
-
lr_finder.reset()
|
151 |
-
return suggested_lr
|
152 |
-
def configure_optimizers(self):
|
153 |
-
optimizer = torch.optim.SGD(
|
154 |
-
self.parameters(),
|
155 |
-
lr=self.hparams.lr,
|
156 |
-
momentum=0.9,
|
157 |
-
weight_decay=5e-4,
|
158 |
-
)
|
159 |
-
suggested_lr = self.lr_finder(optimizer)
|
160 |
-
steps_per_epoch = len(self.train_dataloader())
|
161 |
-
scheduler_dict = {
|
162 |
-
"scheduler": OneCycleLR(
|
163 |
-
optimizer, max_lr=suggested_lr,
|
164 |
-
steps_per_epoch=steps_per_epoch,
|
165 |
-
epochs=self.trainer.max_epochs,
|
166 |
-
pct_start=5/self.trainer.max_epochs,
|
167 |
-
three_phase=False,
|
168 |
-
div_factor=100,
|
169 |
-
final_div_factor=100,
|
170 |
-
anneal_strategy='linear',
|
171 |
-
),
|
172 |
-
"interval": "step",
|
173 |
-
}
|
174 |
-
return {"optimizer": optimizer, "lr_scheduler": scheduler_dict}
|
175 |
-
####################
|
176 |
-
# DATA RELATED HOOKS
|
177 |
-
####################
|
178 |
-
|
179 |
-
def prepare_data(self, data_path='../data'):
|
180 |
-
CifarAlbumentationsDataset(
|
181 |
-
data_path, train=True, download=True)
|
182 |
-
CifarAlbumentationsDataset(
|
183 |
-
data_path, train=False, download=True)
|
184 |
-
|
185 |
-
def setup(self, stage=None, data_dir='../data'):
|
186 |
-
|
187 |
-
if stage == "fit" or stage is None:
|
188 |
-
self.train_dataset = CifarAlbumentationsDataset(data_dir, train=True, transform=TRAIN_TRANSFORM)
|
189 |
-
self.test_dataset = CifarAlbumentationsDataset(data_dir, train=False, transform=TEST_TRANSFORM)
|
190 |
-
|
191 |
-
|
192 |
-
def train_dataloader(self):
|
193 |
-
return DataLoader(self.train_dataset, batch_size=self.hparams.batch_size,
|
194 |
-
shuffle=True, pin_memory=True) #num_workers=4,
|
195 |
-
|
196 |
-
def val_dataloader(self):
|
197 |
-
return DataLoader(self.test_dataset, batch_size=self.hparams.batch_size,
|
198 |
-
shuffle=False, pin_memory=True)
|
199 |
-
|
|
|
79 |
def ResNet18():
|
80 |
return ResNet(BasicBlock, [2, 2, 2, 2])
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -5,4 +5,3 @@ grad-cam
|
|
5 |
pillow
|
6 |
numpy
|
7 |
albumentations
|
8 |
-
pytorch-lightning
|
|
|
5 |
pillow
|
6 |
numpy
|
7 |
albumentations
|
|
resnet.pth → resnet18.pth
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5cc1136d85d13f5a4152098208cdddf533cf344ffbfb30a06dcb698dddf862f
|
3 |
+
size 44772860
|