Spaces:
Runtime error
Runtime error
File size: 12,524 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import importlib
import random
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.optim import SGD, Adam, RMSprop, lr_scheduler
from imaginaire.optimizers import Fromage, Madam
from imaginaire.utils.distributed import get_rank, get_world_size
from imaginaire.utils.distributed import master_only_print as print
from imaginaire.utils.init_weight import weights_init, weights_rescale
from imaginaire.utils.model_average import ModelAverage
def set_random_seed(seed, by_rank=False):
r"""Set random seeds for everything.
Args:
seed (int): Random seed.
by_rank (bool):
"""
if by_rank:
seed += get_rank()
print(f"Using random seed {seed}")
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def get_trainer(cfg, net_G, net_D=None,
opt_G=None, opt_D=None,
sch_G=None, sch_D=None,
train_data_loader=None,
val_data_loader=None):
"""Return the trainer object.
Args:
cfg (Config): Loaded config object.
net_G (obj): Generator network object.
net_D (obj): Discriminator network object.
opt_G (obj): Generator optimizer object.
opt_D (obj): Discriminator optimizer object.
sch_G (obj): Generator optimizer scheduler object.
sch_D (obj): Discriminator optimizer scheduler object.
train_data_loader (obj): Train data loader.
val_data_loader (obj): Validation data loader.
Returns:
(obj): Trainer object.
"""
trainer_lib = importlib.import_module(cfg.trainer.type)
trainer = trainer_lib.Trainer(cfg, net_G, net_D,
opt_G, opt_D,
sch_G, sch_D,
train_data_loader, val_data_loader)
return trainer
def get_model_optimizer_and_scheduler(cfg, seed=0):
r"""Return the networks, the optimizers, and the schedulers. We will
first set the random seed to a fixed value so that each GPU copy will be
initialized to have the same network weights. We will then use different
random seeds for different GPUs. After this we will wrap the generator
with a moving average model if applicable. It is followed by getting the
optimizers and data distributed data parallel wrapping.
Args:
cfg (obj): Global configuration.
seed (int): Random seed.
Returns:
(dict):
- net_G (obj): Generator network object.
- net_D (obj): Discriminator network object.
- opt_G (obj): Generator optimizer object.
- opt_D (obj): Discriminator optimizer object.
- sch_G (obj): Generator optimizer scheduler object.
- sch_D (obj): Discriminator optimizer scheduler object.
"""
# We first set the random seed to be the same so that we initialize each
# copy of the network in exactly the same way so that they have the same
# weights and other parameters. The true seed will be the seed.
set_random_seed(seed, by_rank=False)
# Construct networks
lib_G = importlib.import_module(cfg.gen.type)
lib_D = importlib.import_module(cfg.dis.type)
net_G = lib_G.Generator(cfg.gen, cfg.data)
net_D = lib_D.Discriminator(cfg.dis, cfg.data)
print('Initialize net_G and net_D weights using '
'type: {} gain: {}'.format(cfg.trainer.init.type,
cfg.trainer.init.gain))
init_bias = getattr(cfg.trainer.init, 'bias', None)
net_G.apply(weights_init(
cfg.trainer.init.type, cfg.trainer.init.gain, init_bias))
net_D.apply(weights_init(
cfg.trainer.init.type, cfg.trainer.init.gain, init_bias))
net_G.apply(weights_rescale())
net_D.apply(weights_rescale())
# for name, p in net_G.named_parameters():
# if 'modulation' in name and 'bias' in name:
# nn.init.constant_(p.data, 1.)
net_G = net_G.to('cuda')
net_D = net_D.to('cuda')
# Different GPU copies of the same model will receive noises
# initialized with different random seeds (if applicable) thanks to the
# set_random_seed command (GPU #K has random seed = args.seed + K).
set_random_seed(seed, by_rank=True)
print('net_G parameter count: {:,}'.format(_calculate_model_size(net_G)))
print('net_D parameter count: {:,}'.format(_calculate_model_size(net_D)))
# Optimizer
opt_G = get_optimizer(cfg.gen_opt, net_G)
opt_D = get_optimizer(cfg.dis_opt, net_D)
net_G, net_D, opt_G, opt_D = \
wrap_model_and_optimizer(cfg, net_G, net_D, opt_G, opt_D)
# Scheduler
sch_G = get_scheduler(cfg.gen_opt, opt_G)
sch_D = get_scheduler(cfg.dis_opt, opt_D)
return net_G, net_D, opt_G, opt_D, sch_G, sch_D
def wrap_model_and_optimizer(cfg, net_G, net_D, opt_G, opt_D):
r"""Wrap the networks and the optimizers with AMP DDP and (optionally)
model average.
Args:
cfg (obj): Global configuration.
net_G (obj): Generator network object.
net_D (obj): Discriminator network object.
opt_G (obj): Generator optimizer object.
opt_D (obj): Discriminator optimizer object.
Returns:
(dict):
- net_G (obj): Generator network object.
- net_D (obj): Discriminator network object.
- opt_G (obj): Generator optimizer object.
- opt_D (obj): Discriminator optimizer object.
"""
# Apply model average wrapper.
if cfg.trainer.model_average_config.enabled:
if hasattr(cfg.trainer.model_average_config, 'g_smooth_img'):
# Specifies half-life of the running average of generator weights.
cfg.trainer.model_average_config.beta = \
0.5 ** (cfg.data.train.batch_size *
get_world_size() / cfg.trainer.model_average_config.g_smooth_img)
print(f"EMA Decay Factor: {cfg.trainer.model_average_config.beta}")
net_G = ModelAverage(net_G, cfg.trainer.model_average_config.beta,
cfg.trainer.model_average_config.start_iteration,
cfg.trainer.model_average_config.remove_sn)
if cfg.trainer.model_average_config.enabled:
net_G_module = net_G.module
else:
net_G_module = net_G
if hasattr(net_G_module, 'custom_init'):
net_G_module.custom_init()
net_G = _wrap_model(cfg, net_G)
net_D = _wrap_model(cfg, net_D)
return net_G, net_D, opt_G, opt_D
def _calculate_model_size(model):
r"""Calculate number of parameters in a PyTorch network.
Args:
model (obj): PyTorch network.
Returns:
(int): Number of parameters.
"""
return sum(p.numel() for p in model.parameters() if p.requires_grad)
class WrappedModel(nn.Module):
r"""Dummy wrapping the module.
"""
def __init__(self, module):
super(WrappedModel, self).__init__()
self.module = module
def forward(self, *args, **kwargs):
r"""PyTorch module forward function overload."""
return self.module(*args, **kwargs)
def _wrap_model(cfg, model):
r"""Wrap a model for distributed data parallel training.
Args:
model (obj): PyTorch network model.
Returns:
(obj): Wrapped PyTorch network model.
"""
if torch.distributed.is_available() and dist.is_initialized():
# ddp = cfg.trainer.distributed_data_parallel
find_unused_parameters = cfg.trainer.distributed_data_parallel_params.find_unused_parameters
return torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[cfg.local_rank],
output_device=cfg.local_rank,
find_unused_parameters=find_unused_parameters,
broadcast_buffers=False
)
# if ddp == 'pytorch':
# return torch.nn.parallel.DistributedDataParallel(
# model,
# device_ids=[cfg.local_rank],
# output_device=cfg.local_rank,
# find_unused_parameters=find_unused_parameters,
# broadcast_buffers=False)
# else:
# delay_allreduce = cfg.trainer.delay_allreduce
# return apex.parallel.DistributedDataParallel(
# model, delay_allreduce=delay_allreduce)
else:
return WrappedModel(model)
def get_scheduler(cfg_opt, opt):
"""Return the scheduler object.
Args:
cfg_opt (obj): Config for the specific optimization module (gen/dis).
opt (obj): PyTorch optimizer object.
Returns:
(obj): Scheduler
"""
if cfg_opt.lr_policy.type == 'step':
scheduler = lr_scheduler.StepLR(
opt,
step_size=cfg_opt.lr_policy.step_size,
gamma=cfg_opt.lr_policy.gamma)
elif cfg_opt.lr_policy.type == 'constant':
scheduler = lr_scheduler.LambdaLR(opt, lambda x: 1)
elif cfg_opt.lr_policy.type == 'linear':
# Start linear decay from here.
decay_start = cfg_opt.lr_policy.decay_start
# End linear decay here.
# Continue to train using the lowest learning rate till the end.
decay_end = cfg_opt.lr_policy.decay_end
# Lowest learning rate multiplier.
decay_target = cfg_opt.lr_policy.decay_target
def sch(x):
return min(
max(((x - decay_start) * decay_target + decay_end - x) / (
decay_end - decay_start
), decay_target), 1.
)
scheduler = lr_scheduler.LambdaLR(opt, lambda x: sch(x))
else:
return NotImplementedError('Learning rate policy {} not implemented.'.
format(cfg_opt.lr_policy.type))
return scheduler
def get_optimizer(cfg_opt, net):
r"""Return the scheduler object.
Args:
cfg_opt (obj): Config for the specific optimization module (gen/dis).
net (obj): PyTorch network object.
Returns:
(obj): Pytorch optimizer
"""
if hasattr(net, 'get_param_groups'):
# Allow the network to use different hyper-parameters (e.g., learning
# rate) for different parameters.
params = net.get_param_groups(cfg_opt)
else:
params = net.parameters()
return get_optimizer_for_params(cfg_opt, params)
def get_optimizer_for_params(cfg_opt, params):
r"""Return the scheduler object.
Args:
cfg_opt (obj): Config for the specific optimization module (gen/dis).
params (obj): Parameters to be trained by the parameters.
Returns:
(obj): Optimizer
"""
# We will use fuse optimizers by default.
fused_opt = cfg_opt.fused_opt
try:
from apex.optimizers import FusedAdam
except: # noqa
fused_opt = False
if cfg_opt.type == 'adam':
if fused_opt:
opt = FusedAdam(params,
lr=cfg_opt.lr, eps=cfg_opt.eps,
betas=(cfg_opt.adam_beta1, cfg_opt.adam_beta2))
else:
opt = Adam(params,
lr=cfg_opt.lr, eps=cfg_opt.eps,
betas=(cfg_opt.adam_beta1, cfg_opt.adam_beta2))
elif cfg_opt.type == 'madam':
g_bound = getattr(cfg_opt, 'g_bound', None)
opt = Madam(params, lr=cfg_opt.lr,
scale=cfg_opt.scale, g_bound=g_bound)
elif cfg_opt.type == 'fromage':
opt = Fromage(params, lr=cfg_opt.lr)
elif cfg_opt.type == 'rmsprop':
opt = RMSprop(params, lr=cfg_opt.lr,
eps=cfg_opt.eps, weight_decay=cfg_opt.weight_decay)
elif cfg_opt.type == 'sgd':
if fused_opt:
from apex.optimizers import FusedSGD
opt = FusedSGD(params,
lr=cfg_opt.lr,
momentum=cfg_opt.momentum,
weight_decay=cfg_opt.weight_decay)
else:
opt = SGD(params,
lr=cfg_opt.lr,
momentum=cfg_opt.momentum,
weight_decay=cfg_opt.weight_decay)
else:
raise NotImplementedError(
'Optimizer {} is not yet implemented.'.format(cfg_opt.type))
return opt
|