Spaces:
Runtime error
Runtime error
File size: 8,021 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
"""Miscellaneous utils."""
import collections
from collections import OrderedDict
import torch
import torch.nn.functional as F
string_classes = (str, bytes)
def split_labels(labels, label_lengths):
r"""Split concatenated labels into their parts.
Args:
labels (torch.Tensor): Labels obtained through concatenation.
label_lengths (OrderedDict): Containing order of labels & their lengths.
Returns:
"""
assert isinstance(label_lengths, OrderedDict)
start = 0
outputs = {}
for data_type, length in label_lengths.items():
end = start + length
if labels.dim() == 5:
outputs[data_type] = labels[:, :, start:end]
elif labels.dim() == 4:
outputs[data_type] = labels[:, start:end]
elif labels.dim() == 3:
outputs[data_type] = labels[start:end]
start = end
return outputs
def requires_grad(model, require=True):
r""" Set a model to require gradient or not.
Args:
model (nn.Module): Neural network model.
require (bool): Whether the network requires gradient or not.
Returns:
"""
for p in model.parameters():
p.requires_grad = require
def to_device(data, device):
r"""Move all tensors inside data to device.
Args:
data (dict, list, or tensor): Input data.
device (str): 'cpu' or 'cuda'.
"""
assert device in ['cpu', 'cuda']
if isinstance(data, torch.Tensor):
data = data.to(torch.device(device))
return data
elif isinstance(data, collections.abc.Mapping):
return {key: to_device(data[key], device) for key in data}
elif isinstance(data, collections.abc.Sequence) and \
not isinstance(data, string_classes):
return [to_device(d, device) for d in data]
else:
return data
def to_cuda(data):
r"""Move all tensors inside data to gpu.
Args:
data (dict, list, or tensor): Input data.
"""
return to_device(data, 'cuda')
def to_cpu(data):
r"""Move all tensors inside data to cpu.
Args:
data (dict, list, or tensor): Input data.
"""
return to_device(data, 'cpu')
def to_half(data):
r"""Move all floats to half.
Args:
data (dict, list or tensor): Input data.
"""
if isinstance(data, torch.Tensor) and torch.is_floating_point(data):
data = data.half()
return data
elif isinstance(data, collections.abc.Mapping):
return {key: to_half(data[key]) for key in data}
elif isinstance(data, collections.abc.Sequence) and \
not isinstance(data, string_classes):
return [to_half(d) for d in data]
else:
return data
def to_float(data):
r"""Move all halfs to float.
Args:
data (dict, list or tensor): Input data.
"""
if isinstance(data, torch.Tensor) and torch.is_floating_point(data):
data = data.float()
return data
elif isinstance(data, collections.abc.Mapping):
return {key: to_float(data[key]) for key in data}
elif isinstance(data, collections.abc.Sequence) and \
not isinstance(data, string_classes):
return [to_float(d) for d in data]
else:
return data
def to_channels_last(data):
r"""Move all data to ``channels_last`` format.
Args:
data (dict, list or tensor): Input data.
"""
if isinstance(data, torch.Tensor):
if data.dim() == 4:
data = data.to(memory_format=torch.channels_last)
return data
elif isinstance(data, collections.abc.Mapping):
return {key: to_channels_last(data[key]) for key in data}
elif isinstance(data, collections.abc.Sequence) and \
not isinstance(data, string_classes):
return [to_channels_last(d) for d in data]
else:
return data
def slice_tensor(data, start, end):
r"""Slice all tensors from start to end.
Args:
data (dict, list or tensor): Input data.
"""
if isinstance(data, torch.Tensor):
data = data[start:end]
return data
elif isinstance(data, collections.abc.Mapping):
return {key: slice_tensor(data[key], start, end) for key in data}
elif isinstance(data, collections.abc.Sequence) and \
not isinstance(data, string_classes):
return [slice_tensor(d, start, end) for d in data]
else:
return data
def get_and_setattr(cfg, name, default):
r"""Get attribute with default choice. If attribute does not exist, set it
using the default value.
Args:
cfg (obj) : Config options.
name (str) : Attribute name.
default (obj) : Default attribute.
Returns:
(obj) : Desired attribute.
"""
if not hasattr(cfg, name) or name not in cfg.__dict__:
setattr(cfg, name, default)
return getattr(cfg, name)
def get_nested_attr(cfg, attr_name, default):
r"""Iteratively try to get the attribute from cfg. If not found, return
default.
Args:
cfg (obj): Config file.
attr_name (str): Attribute name (e.g. XXX.YYY.ZZZ).
default (obj): Default return value for the attribute.
Returns:
(obj): Attribute value.
"""
names = attr_name.split('.')
atr = cfg
for name in names:
if not hasattr(atr, name):
return default
atr = getattr(atr, name)
return atr
def gradient_norm(model):
r"""Return the gradient norm of model.
Args:
model (PyTorch module): Your network.
"""
total_norm = 0
for p in model.parameters():
if p.grad is not None:
param_norm = p.grad.norm(2)
total_norm += param_norm.item() ** 2
return total_norm ** (1. / 2)
def random_shift(x, offset=0.05, mode='bilinear', padding_mode='reflection'):
r"""Randomly shift the input tensor.
Args:
x (4D tensor): The input batch of images.
offset (int): The maximum offset ratio that is between [0, 1].
The maximum shift is offset * image_size for each direction.
mode (str): The resample mode for 'F.grid_sample'.
padding_mode (str): The padding mode for 'F.grid_sample'.
Returns:
x (4D tensor) : The randomly shifted image.
"""
assert x.dim() == 4, "Input must be a 4D tensor."
batch_size = x.size(0)
theta = torch.eye(2, 3, device=x.device).unsqueeze(0).repeat(
batch_size, 1, 1)
theta[:, :, 2] = 2 * offset * torch.rand(batch_size, 2) - offset
grid = F.affine_grid(theta, x.size())
x = F.grid_sample(x, grid, mode=mode, padding_mode=padding_mode)
return x
# def truncated_gaussian(threshold, size, seed=None, device=None):
# r"""Apply the truncated gaussian trick to trade diversity for quality
#
# Args:
# threshold (float): Truncation threshold.
# size (list of integer): Tensor size.
# seed (int): Random seed.
# device:
# """
# state = None if seed is None else np.random.RandomState(seed)
# values = truncnorm.rvs(-threshold, threshold,
# size=size, random_state=state)
# return torch.tensor(values, device=device).float()
def apply_imagenet_normalization(input):
r"""Normalize using ImageNet mean and std.
Args:
input (4D tensor NxCxHxW): The input images, assuming to be [-1, 1].
Returns:
Normalized inputs using the ImageNet normalization.
"""
# normalize the input back to [0, 1]
normalized_input = (input + 1) / 2
# normalize the input using the ImageNet mean and std
mean = normalized_input.new_tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)
std = normalized_input.new_tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)
output = (normalized_input - mean) / std
return output
|