Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import numpy as np | |
import os | |
from PIL import Image | |
import torch | |
import torch.nn.functional as F | |
from torchvision.transforms import Compose | |
import tempfile | |
from gradio_imageslider import ImageSlider | |
from depth_anything.dpt import DepthAnything | |
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet | |
css = """ | |
#img-display-container { | |
max-height: 100vh; | |
} | |
#img-display-input { | |
max-height: 80vh; | |
} | |
#img-display-output { | |
max-height: 80vh; | |
} | |
""" | |
DEVICE = 'cpu' | |
encoder = 'vitl' # can also be 'vitb' or 'vitl' | |
model = DepthAnything.from_pretrained(f"LiheYoung/depth_anything_{encoder}14").to(DEVICE).eval() | |
title = "# Depth Anything with log" | |
transform = Compose([ | |
Resize( | |
width=518, | |
height=518, | |
resize_target=False, | |
keep_aspect_ratio=True, | |
ensure_multiple_of=14, | |
resize_method='lower_bound', | |
image_interpolation_method=cv2.INTER_CUBIC, | |
), | |
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
PrepareForNet(), | |
]) | |
def predict_depth(model, image): | |
return model(image) | |
with (gr.Blocks(css=css) as demo): | |
gr.Markdown(title) | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input') | |
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5,) | |
raw_file = gr.File(label="16-bit raw depth (can be considered as disparity)") | |
submit = gr.Button("Submit") | |
def on_submit(image): | |
original_image = image.copy() | |
h, w = image.shape[:2] | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0 | |
image = transform({'image': image})['image'] | |
image = torch.from_numpy(image).unsqueeze(0).to(DEVICE) | |
depth = predict_depth(model, image) | |
depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0] | |
raw_depth = Image.fromarray(depth.cpu().numpy().astype('uint16')) | |
tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False) | |
raw_depth.save(tmp.name) | |
# depth = (depth - depth.min()) / (depth.max() - depth.min()) *255. | |
image_flattened = depth.view(image.size(0), -1) | |
# 计算分位数阈值 | |
lower_quantile = torch.quantile(image_flattened, 0.05, dim=1, keepdim=True) | |
upper_quantile = torch.quantile(image_flattened, 0.95, dim=1, keepdim=True) | |
# 应用阈值,去除极值 | |
clamped_image_flattened = torch.clamp(image_flattened, lower_quantile, upper_quantile) | |
# 恢复图像到原始形状 | |
clamped_image = clamped_image_flattened.view_as(depth) | |
epsilon = 1e-7 # 一个小的正值,以避免计算log(0) | |
log_image = torch.log(clamped_image + epsilon) | |
depth = (log_image - log_image.min()) / (log_image.max() - log_image.min()) *255. | |
depth = depth.cpu().numpy().astype(np.uint8) | |
return [(original_image, depth), tmp.name] | |
submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, raw_file]) | |
if __name__ == '__main__': | |
demo.queue().launch() |