File size: 5,362 Bytes
7f46a81
 
d40cd4a
 
7f46a81
675d8ee
7f46a81
 
 
d40cd4a
f26592e
7f46a81
d40cd4a
7f46a81
c284dff
7f46a81
 
 
d40cd4a
7f46a81
 
 
 
6541511
7f46a81
 
f26592e
 
d40cd4a
 
7f46a81
6541511
 
c284dff
5fc81fd
7f46a81
 
 
c284dff
675d8ee
f26592e
 
 
5cebf82
229097c
 
 
7f46a81
 
b4ea488
7f46a81
 
229097c
d40cd4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f46a81
 
 
 
 
7ff5239
7f46a81
d40cd4a
39e2176
d40cd4a
39e2176
 
 
 
 
 
 
d40cd4a
 
7f46a81
d40cd4a
7f46a81
229097c
d40cd4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229097c
 
d40cd4a
 
 
 
f7c2fa2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import requests
import json


class VectaraQuery():
    def __init__(self, api_key: str, customer_id: str, corpus_ids: list[str], prompt_name: str = None):
        self.customer_id = customer_id
        self.corpus_ids = corpus_ids
        self.api_key = api_key
        self.prompt_name = prompt_name if prompt_name else "vectara-experimental-summary-ext-2023-12-11-sml"
        self.conv_id = None

    def get_body(self, query_str: str):
        corpora_key_list = [{
                'customer_id': self.customer_id, 'corpus_id': corpus_id, 'lexical_interpolation_config': {'lambda': 0.005}
            } for corpus_id in self.corpus_ids
        ]

        return {
            'query': [
                { 
                    'query': query_str,
                    'start': 0,
                    'numResults': 50,
                    'corpusKey': corpora_key_list,
                    'context_config': {
                        'sentences_before': 2,
                        'sentences_after': 2,
                        'start_tag': "%START_SNIPPET%",
                        'end_tag': "%END_SNIPPET%",
                    },
                    'rerankingConfig':
                    {
                        'rerankerId': 272725719,
                    },
                    'summary': [
                        {
                            'responseLang': 'eng',
                            'maxSummarizedResults': 10,
                            'summarizerPromptName': self.prompt_name,
                            'chat': {
                                'store': True,
                                'conversationId': self.conv_id
                            },
                            'citationParams': {
                                "style": "NONE",
                            }
                        }
                    ]
                } 
            ]
        }
    

    def get_headers(self):
        return {
            "Content-Type": "application/json",
            "Accept": "application/json",
            "customer-id": self.customer_id,
            "x-api-key": self.api_key,
            "grpc-timeout": "60S"
        }

    def submit_query(self, query_str: str):

        endpoint = f"https://api.vectara.io/v1/query"
        body = self.get_body(query_str)

        response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers())    
        if response.status_code != 200:
            print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
            return "Sorry, something went wrong in my brain. Please try again later."

        res = response.json()

        summary = res['responseSet'][0]['summary'][0]['text']
        chat = res['responseSet'][0]['summary'][0].get('chat', None)

        if chat and chat['status'] is not None:
            st_code = chat['status']
            print(f"Chat query failed with code {st_code}")
            if st_code == 'RESOURCE_EXHAUSTED':
                self.conv_id = None
                return 'Sorry, Vectara chat turns exceeds plan limit.'
            return 'Sorry, something went wrong in my brain. Please try again later.'
        
        self.conv_id = chat['conversationId'] if chat else None
        return summary

    def submit_query_streaming(self, query_str: str):

        endpoint = "https://api.vectara.io/v1/stream-query"
        body = self.get_body(query_str)

        response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers(), stream=True) 
        if response.status_code != 200:
            print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
            return "Sorry, something went wrong in my brain. Please try again later."

        chunks = []
        for line in response.iter_lines():
            if line:  # filter out keep-alive new lines
                data = json.loads(line.decode('utf-8'))
                res = data['result']
                response_set = res['responseSet']                
                if response_set is None:
                    # grab next chunk and yield it as output
                    summary = res.get('summary', None)
                    if summary is None or len(summary)==0:
                        continue
                    else:
                        chat = summary.get('chat', None)
                        if chat and chat.get('status', None):
                            st_code = chat['status']
                            print(f"Chat query failed with code {st_code}")
                            if st_code == 'RESOURCE_EXHAUSTED':
                                self.conv_id = None
                                return 'Sorry, Vectara chat turns exceeds plan limit.'
                            return 'Sorry, something went wrong in my brain. Please try again later.'
                        conv_id = chat.get('conversationId', None) if chat else None
                        if conv_id:
                            self.conv_id = conv_id
                        
                    chunk = summary['text']
                    chunks.append(chunk)
                    yield chunk

                    if summary['done']:
                        break
        
        return ''.join(chunks)