File size: 3,556 Bytes
7f46a81
 
 
 
 
 
 
486e4f5
 
 
 
adf3dc3
7f46a81
d26ed68
7f46a81
 
486e4f5
 
 
 
673067b
0aa3b05
 
 
 
 
 
 
 
6975b52
486e4f5
6975b52
0aa3b05
 
6975b52
673067b
0aa3b05
 
7f46a81
 
 
 
 
 
6975b52
7f46a81
 
 
 
 
 
347c81e
7f46a81
 
 
 
d26ed68
7f46a81
 
d26ed68
 
7f46a81
d26ed68
 
 
 
7f46a81
d26ed68
 
 
 
 
 
 
 
 
486e4f5
 
 
 
 
 
 
 
 
d26ed68
7f46a81
 
6975b52
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from omegaconf import OmegaConf
from query import VectaraQuery
import os

import streamlit as st
from PIL import Image

def isTrue(x) -> bool:
    if isinstance(x, bool):
        return s
    return x.strip().lower() == 'true'

def launch_bot():
    def generate_response(question):
        response = vq.submit_query(question)
        return response
    
    def generate_streaming_response(question):
        response = vq.submit_query_streaming(question)
        return response

    if 'cfg' not in st.session_state:
        corpus_ids = str(os.environ['corpus_ids']).split(',')
        cfg = OmegaConf.create({
            'customer_id': str(os.environ['customer_id']),
            'corpus_ids': corpus_ids,
            'api_key': str(os.environ['api_key']),
            'title': os.environ['title'],
            'description': os.environ['description'],
            'source_data_desc': os.environ['source_data_desc'],
            'streaming': isTrue(os.environ.get('streaming', False)),
            'prompt_name': os.environ.get('prompt_name', None)
        })
        st.session_state.cfg = cfg
        st.session_state.vq = VectaraQuery(cfg.api_key, cfg.customer_id, cfg.corpus_ids, cfg.prompt_name)

    cfg = st.session_state.cfg
    vq = st.session_state.vq
    st.set_page_config(page_title=cfg.title, layout="wide")

    # left side content
    with st.sidebar:
        image = Image.open('Vectara-logo.png')
        st.markdown(f"## Welcome to {cfg.title}\n\n"
                    f"This demo uses Retrieval Augmented Generation to ask questions about {cfg.source_data_desc}\n\n")

        st.markdown("---")
        st.markdown(
            "## How this works?\n"
            "This app was built with [Vectara](https://vectara.com).\n"
            "Vectara's [Indexing API](https://docs.vectara.com/docs/api-reference/indexing-apis/indexing) was used to ingest the data into a Vectara corpus (or index).\n\n"
            "This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
        )
        st.markdown("---")
        st.image(image, width=250)

    st.markdown(f"<center> <h2> Vectara chat demo: {cfg.title} </h2> </center>", unsafe_allow_html=True)
    st.markdown(f"<center> <h4> {cfg.description} <h4> </center>", unsafe_allow_html=True)

    if "messages" not in st.session_state.keys():
        st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]

    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(message["content"])

    # User-provided prompt
    if prompt := st.chat_input():
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.write(prompt)
    
    # Generate a new response if last message is not from assistant
    if st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant"):
            if cfg.streaming:
                stream = generate_streaming_response(prompt) 
                response = st.write_stream(stream) 
            else:
                with st.spinner("Thinking..."):
                    response = generate_response(prompt)
                    st.write(response)
            message = {"role": "assistant", "content": response}
            st.session_state.messages.append(message)
    
if __name__ == "__main__":
    launch_bot()