File size: 6,284 Bytes
1744191
 
0e395e5
1744191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04b3bac
 
 
 
0e395e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04b3bac
0e395e5
 
04b3bac
0e395e5
 
 
 
04b3bac
1744191
 
 
 
 
 
 
 
 
 
0e395e5
1744191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e395e5
 
 
1744191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e395e5
1744191
 
 
 
 
 
 
 
 
 
0e395e5
 
 
1744191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e395e5
 
 
 
 
 
 
1744191
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from PIL import Image
import sys
import re

import streamlit as st
from streamlit_pills import pills
from streamlit_feedback import streamlit_feedback

from utils import thumbs_feedback, escape_dollars_outside_latex, send_amplitude_data

from vectara_agentic.agent import AgentStatusType
from agent import initialize_agent, get_agent_config

initial_prompt = "How can I help you today?"

def show_example_questions():        
    if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:            
        selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
        if selected_example:
            st.session_state.ex_prompt = selected_example
            st.session_state.first_turn = False
            return True
    return False

def format_log_msg(log_msg: str):
    max_log_msg_size = 500
    return log_msg if len(log_msg) <= max_log_msg_size else log_msg[:max_log_msg_size]+'...'

def agent_progress_callback(status_type: AgentStatusType, msg: str):
    output = f'<span style="color:blue;">{status_type.value}</span>: {msg}'
    st.session_state.log_messages.append(output)
    if 'status' in st.session_state:
        latest_message = ''
        if status_type == AgentStatusType.TOOL_CALL:
            match = re.search(r"'([^']*)'", msg)
            tool_name = match.group(1) if match else "Unknown tool"
            latest_message = f"Calling tool {tool_name}..."
        elif status_type == AgentStatusType.TOOL_OUTPUT:
            latest_message = "Analyzing tool output..."
        else:
            return
        
        st.session_state.status.update(label=latest_message)
        
        with st.session_state.status:
            for log_msg in st.session_state.log_messages:
                st.markdown(format_log_msg(log_msg), unsafe_allow_html=True)

@st.dialog(title="Agent logs", width='large')
def show_modal():
    for log_msg in st.session_state.log_messages:
        st.markdown(format_log_msg(log_msg), unsafe_allow_html=True)

async def launch_bot():
    def reset():
        st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "πŸ¦–"}]
        st.session_state.log_messages = []
        st.session_state.prompt = None
        st.session_state.ex_prompt = None
        st.session_state.first_turn = True
        st.session_state.show_logs = False
        if 'agent' not in st.session_state:
            st.session_state.agent = initialize_agent(cfg, agent_progress_callback=agent_progress_callback)
        else:
            st.session_state.agent.clear_memory()

    if 'cfg' not in st.session_state:
        cfg = get_agent_config()
        st.session_state.cfg = cfg
        st.session_state.ex_prompt = None
        example_messages = [example.strip() for example in cfg.examples.split(";")] if cfg.examples else []
        st.session_state.example_messages = [em for em in example_messages if len(em)>0]
        reset()

    cfg = st.session_state.cfg

    # left side content
    with st.sidebar:
        image = Image.open('Vectara-logo.png')
        st.image(image, width=175)
        st.markdown(f"## {cfg['demo_welcome']}")
        st.markdown(f"{cfg['demo_description']}")

        st.markdown("\n\n")
        bc1, bc2 = st.columns([1, 1])
        with bc1:
            if st.button('Start Over'):
                reset()
                st.rerun()
        with bc2:
            if st.button('Show Logs'):
                show_modal()

        st.divider()
        st.markdown(
            "## How this works?\n"
            "This app was built with [Vectara](https://vectara.com).\n\n"
            "It demonstrates the use of Agentic RAG functionality with Vectara"
        )

    if "messages" not in st.session_state.keys():
        reset()

    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"], avatar=message["avatar"]):
            st.write(message["content"])

    example_container = st.empty()
    with example_container:
        if show_example_questions():
            example_container.empty()
            st.session_state.first_turn = False
            st.rerun()

    # User-provided prompt
    if st.session_state.ex_prompt:
        prompt = st.session_state.ex_prompt
    else:
        prompt = st.chat_input()
    if prompt:
        st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'πŸ§‘β€πŸ’»'})
        st.session_state.prompt = prompt
        st.session_state.log_messages = []
        st.session_state.show_logs = False
        with st.chat_message("user", avatar='πŸ§‘β€πŸ’»'):
            print(f"Starting new question: {prompt}\n")
            st.write(prompt)
        st.session_state.ex_prompt = None
        
    # Generate a new response if last message is not from assistant
    if st.session_state.prompt:
        with st.chat_message("assistant", avatar='πŸ€–'):
            st.session_state.status = st.status('Processing...', expanded=False)
            res = st.session_state.agent.chat(st.session_state.prompt)
            res = escape_dollars_outside_latex(res)
            message = {"role": "assistant", "content": res, "avatar": 'πŸ€–'}
            st.session_state.messages.append(message)
            st.markdown(res)

        send_amplitude_data(
            user_query=st.session_state.messages[-2]["content"], 
            bot_response=st.session_state.messages[-1]["content"],
            demo_name=cfg['demo_name']
        )

        st.session_state.ex_prompt = None
        st.session_state.prompt = None
        st.session_state.first_turn = False
        st.rerun()

    # Record user feedback
    if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != initial_prompt):
        if "feedback_key" not in st.session_state:
            st.session_state.feedback_key = 0
        streamlit_feedback(
            feedback_type="thumbs", on_submit=thumbs_feedback, key=str(st.session_state.feedback_key),
            kwargs={"user_query": st.session_state.messages[-2]["content"],
                    "bot_response": st.session_state.messages[-1]["content"],
                    "demo_name": cfg["demo_name"]}
            )


    sys.stdout.flush()