Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
updated
Browse files- Dockerfile +3 -0
- agent.py +47 -22
- requirements.txt +2 -2
- st_app.py +1 -1
Dockerfile
CHANGED
@@ -13,6 +13,9 @@ RUN useradd -m -u 1000 user
|
|
13 |
USER user
|
14 |
ENV HOME /home/user
|
15 |
ENV PATH $HOME/.local/bin:$PATH
|
|
|
|
|
|
|
16 |
|
17 |
WORKDIR $HOME
|
18 |
RUN mkdir app
|
|
|
13 |
USER user
|
14 |
ENV HOME /home/user
|
15 |
ENV PATH $HOME/.local/bin:$PATH
|
16 |
+
ENV TIKTOKEN_CACHE_DIR $HOME/.cache/tiktoken
|
17 |
+
|
18 |
+
RUN mkdir -p $HOME/.cache/tiktoken
|
19 |
|
20 |
WORKDIR $HOME
|
21 |
RUN mkdir app
|
agent.py
CHANGED
@@ -12,6 +12,7 @@ load_dotenv(override=True)
|
|
12 |
from vectara_agentic.agent import Agent
|
13 |
from vectara_agentic.agent_config import AgentConfig
|
14 |
from vectara_agentic.tools import ToolsFactory, VectaraToolFactory
|
|
|
15 |
|
16 |
class AgentTools:
|
17 |
def __init__(self, _cfg, agent_config):
|
@@ -21,13 +22,12 @@ class AgentTools:
|
|
21 |
|
22 |
|
23 |
def get_tools(self):
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
vectara_corpus_key=self.cfg.corpus_keys[0])
|
29 |
|
30 |
-
summarizer = 'vectara-
|
31 |
|
32 |
ask_vehicles = vec_factory_1.create_rag_tool(
|
33 |
tool_name = "ask_vehicles",
|
@@ -35,12 +35,11 @@ class AgentTools:
|
|
35 |
Given a user query,
|
36 |
returns a response to a user question about electric vehicles.
|
37 |
""",
|
38 |
-
tool_args_schema = QueryElectricCars,
|
39 |
reranker = "chain", rerank_k = 100,
|
40 |
rerank_chain = [
|
41 |
{
|
42 |
"type": "slingshot",
|
43 |
-
"cutoff": 0.
|
44 |
},
|
45 |
{
|
46 |
"type": "mmr",
|
@@ -48,24 +47,29 @@ class AgentTools:
|
|
48 |
}
|
49 |
],
|
50 |
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
|
51 |
-
summary_num_results =
|
52 |
vectara_summarizer = summarizer,
|
53 |
-
|
|
|
|
|
|
|
54 |
)
|
55 |
|
56 |
-
vec_factory_2 = VectaraToolFactory(
|
57 |
-
|
|
|
|
|
58 |
|
59 |
|
60 |
class QueryEVLaws(BaseModel):
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
policy_type: Optional[str] = Field(
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
ask_policies = vec_factory_2.create_rag_tool(
|
71 |
tool_name = "ask_policies",
|
@@ -79,7 +83,7 @@ class AgentTools:
|
|
79 |
rerank_chain = [
|
80 |
{
|
81 |
"type": "slingshot",
|
82 |
-
"cutoff": 0.
|
83 |
},
|
84 |
{
|
85 |
"type": "mmr",
|
@@ -88,12 +92,15 @@ class AgentTools:
|
|
88 |
],
|
89 |
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
|
90 |
summary_num_results = 10,
|
|
|
|
|
91 |
vectara_summarizer = summarizer,
|
92 |
include_citations = False,
|
|
|
|
|
93 |
)
|
94 |
|
95 |
tools_factory = ToolsFactory()
|
96 |
-
|
97 |
db_tools = tools_factory.database_tools(
|
98 |
tool_name_prefix = "ev",
|
99 |
content_description = 'Electric Vehicles in the state of Washington and other population information',
|
@@ -111,8 +118,26 @@ def initialize_agent(_cfg, agent_progress_callback=None):
|
|
111 |
- You are a helpful research assistant, with expertise in electric vehicles, in conversation with a user.
|
112 |
- Never discuss politics, and always respond politely.
|
113 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
agent = Agent(
|
|
|
|
|
116 |
tools=AgentTools(_cfg, AgentConfig()).get_tools(),
|
117 |
topic="Electric vehicles in the United States",
|
118 |
custom_instructions=electric_vehicle_bot_instructions,
|
|
|
12 |
from vectara_agentic.agent import Agent
|
13 |
from vectara_agentic.agent_config import AgentConfig
|
14 |
from vectara_agentic.tools import ToolsFactory, VectaraToolFactory
|
15 |
+
from vectara_agentic.types import ModelProvider, AgentType
|
16 |
|
17 |
class AgentTools:
|
18 |
def __init__(self, _cfg, agent_config):
|
|
|
22 |
|
23 |
|
24 |
def get_tools(self):
|
25 |
+
vec_factory_1 = VectaraToolFactory(
|
26 |
+
vectara_api_key=self.cfg.api_keys[0],
|
27 |
+
vectara_corpus_key=self.cfg.corpus_keys[0]
|
28 |
+
)
|
|
|
29 |
|
30 |
+
summarizer = 'vectara-summary-table-md-query-ext-jan-2025-gpt-4o'
|
31 |
|
32 |
ask_vehicles = vec_factory_1.create_rag_tool(
|
33 |
tool_name = "ask_vehicles",
|
|
|
35 |
Given a user query,
|
36 |
returns a response to a user question about electric vehicles.
|
37 |
""",
|
|
|
38 |
reranker = "chain", rerank_k = 100,
|
39 |
rerank_chain = [
|
40 |
{
|
41 |
"type": "slingshot",
|
42 |
+
"cutoff": 0.3
|
43 |
},
|
44 |
{
|
45 |
"type": "mmr",
|
|
|
47 |
}
|
48 |
],
|
49 |
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
|
50 |
+
summary_num_results = 10,
|
51 |
vectara_summarizer = summarizer,
|
52 |
+
max_tokens = 4096, max_response_chars = 8192,
|
53 |
+
include_citations = True,
|
54 |
+
save_history = True,
|
55 |
+
verbose = False,
|
56 |
)
|
57 |
|
58 |
+
vec_factory_2 = VectaraToolFactory(
|
59 |
+
vectara_api_key=self.cfg.api_keys[1],
|
60 |
+
vectara_corpus_key=self.cfg.corpus_keys[1]
|
61 |
+
)
|
62 |
|
63 |
|
64 |
class QueryEVLaws(BaseModel):
|
65 |
+
state: Optional[str] = Field(
|
66 |
+
default=None, description="The two digit state code. Optional.",
|
67 |
+
examples=['CA', 'US', 'WA']
|
68 |
+
)
|
69 |
+
policy_type: Optional[str] = Field(
|
70 |
+
default=None, description="The type of policy. Optional",
|
71 |
+
examples = ['Laws and Regulations', 'State Incentives', 'Incentives', 'Utility / Private Incentives', 'Programs']
|
72 |
+
)
|
73 |
|
74 |
ask_policies = vec_factory_2.create_rag_tool(
|
75 |
tool_name = "ask_policies",
|
|
|
83 |
rerank_chain = [
|
84 |
{
|
85 |
"type": "slingshot",
|
86 |
+
"cutoff": 0.3
|
87 |
},
|
88 |
{
|
89 |
"type": "mmr",
|
|
|
92 |
],
|
93 |
n_sentences_before = 2, n_sentences_after = 2, lambda_val = 0.005,
|
94 |
summary_num_results = 10,
|
95 |
+
max_tokens = 4096,
|
96 |
+
max_response_chars = 8192,
|
97 |
vectara_summarizer = summarizer,
|
98 |
include_citations = False,
|
99 |
+
save_history = True,
|
100 |
+
verbose = False,
|
101 |
)
|
102 |
|
103 |
tools_factory = ToolsFactory()
|
|
|
104 |
db_tools = tools_factory.database_tools(
|
105 |
tool_name_prefix = "ev",
|
106 |
content_description = 'Electric Vehicles in the state of Washington and other population information',
|
|
|
118 |
- You are a helpful research assistant, with expertise in electric vehicles, in conversation with a user.
|
119 |
- Never discuss politics, and always respond politely.
|
120 |
"""
|
121 |
+
agent_config = AgentConfig(
|
122 |
+
agent_type = os.getenv("VECTARA_AGENTIC_AGENT_TYPE", AgentType.OPENAI.value),
|
123 |
+
main_llm_provider = os.getenv("VECTARA_AGENTIC_MAIN_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
124 |
+
main_llm_model_name = os.getenv("VECTARA_AGENTIC_MAIN_MODEL_NAME", ""),
|
125 |
+
tool_llm_provider = os.getenv("VECTARA_AGENTIC_TOOL_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
126 |
+
tool_llm_model_name = os.getenv("VECTARA_AGENTIC_TOOL_MODEL_NAME", ""),
|
127 |
+
observer = os.getenv("VECTARA_AGENTIC_OBSERVER_TYPE", "NO_OBSERVER")
|
128 |
+
)
|
129 |
+
fallback_agent_config = AgentConfig(
|
130 |
+
agent_type = os.getenv("VECTARA_AGENTIC_FALLBACK_AGENT_TYPE", AgentType.OPENAI.value),
|
131 |
+
main_llm_provider = os.getenv("VECTARA_AGENTIC_FALLBACK_MAIN_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
132 |
+
main_llm_model_name = os.getenv("VECTARA_AGENTIC_FALLBACK_MAIN_MODEL_NAME", ""),
|
133 |
+
tool_llm_provider = os.getenv("VECTARA_AGENTIC_FALLBACK_TOOL_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
134 |
+
tool_llm_model_name = os.getenv("VECTARA_AGENTIC_FALLBACK_TOOL_MODEL_NAME", ""),
|
135 |
+
observer = os.getenv("VECTARA_AGENTIC_OBSERVER_TYPE", "NO_OBSERVER")
|
136 |
+
)
|
137 |
|
138 |
agent = Agent(
|
139 |
+
agent_config=agent_config,
|
140 |
+
fallback_agent_config=fallback_agent_config,
|
141 |
tools=AgentTools(_cfg, AgentConfig()).get_tools(),
|
142 |
topic="Electric vehicles in the United States",
|
143 |
custom_instructions=electric_vehicle_bot_instructions,
|
requirements.txt
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
omegaconf==2.3.0
|
2 |
python-dotenv==1.0.1
|
3 |
-
streamlit==1.
|
4 |
streamlit-feedback==0.1.3
|
5 |
langdetect==1.0.9
|
6 |
langcodes==3.4.0
|
7 |
datasets==2.19.2
|
8 |
uuid==1.30
|
9 |
-
vectara-agentic==0.2.
|
10 |
torch==2.6.0
|
|
|
1 |
omegaconf==2.3.0
|
2 |
python-dotenv==1.0.1
|
3 |
+
streamlit==1.45.0
|
4 |
streamlit-feedback==0.1.3
|
5 |
langdetect==1.0.9
|
6 |
langcodes==3.4.0
|
7 |
datasets==2.19.2
|
8 |
uuid==1.30
|
9 |
+
vectara-agentic==0.2.15
|
10 |
torch==2.6.0
|
st_app.py
CHANGED
@@ -131,7 +131,7 @@ async def launch_bot():
|
|
131 |
if st.session_state.prompt:
|
132 |
with st.chat_message("assistant", avatar='🤖'):
|
133 |
st.session_state.status = st.status('Processing...', expanded=False)
|
134 |
-
response = st.session_state.agent.
|
135 |
res = escape_dollars_outside_latex(response.response)
|
136 |
message = {"role": "assistant", "content": res, "avatar": '🤖'}
|
137 |
st.session_state.messages.append(message)
|
|
|
131 |
if st.session_state.prompt:
|
132 |
with st.chat_message("assistant", avatar='🤖'):
|
133 |
st.session_state.status = st.status('Processing...', expanded=False)
|
134 |
+
response = await st.session_state.agent.achat(st.session_state.prompt)
|
135 |
res = escape_dollars_outside_latex(response.response)
|
136 |
message = {"role": "assistant", "content": res, "avatar": '🤖'}
|
137 |
st.session_state.messages.append(message)
|