|
from omegaconf import OmegaConf |
|
from query import VectaraQuery |
|
import os |
|
from PIL import Image |
|
import uuid |
|
|
|
import streamlit as st |
|
from streamlit_pills import pills |
|
from streamlit_feedback import streamlit_feedback |
|
|
|
from utils import thumbs_feedback, send_amplitude_data, escape_dollars_outside_latex |
|
|
|
from dotenv import load_dotenv |
|
load_dotenv(override=True) |
|
|
|
max_examples = 6 |
|
languages = {'English': 'eng', 'Spanish': 'spa', 'French': 'fra', 'Chinese': 'zho', 'German': 'deu', 'Hindi': 'hin', 'Arabic': 'ara', |
|
'Portuguese': 'por', 'Italian': 'ita', 'Japanese': 'jpn', 'Korean': 'kor', 'Russian': 'rus', 'Turkish': 'tur', 'Persian (Farsi)': 'fas', |
|
'Vietnamese': 'vie', 'Thai': 'tha', 'Hebrew': 'heb', 'Dutch': 'nld', 'Indonesian': 'ind', 'Polish': 'pol', 'Ukrainian': 'ukr', |
|
'Romanian': 'ron', 'Swedish': 'swe', 'Czech': 'ces', 'Greek': 'ell', 'Bengali': 'ben', 'Malay (or Malaysian)': 'msa', 'Urdu': 'urd'} |
|
|
|
|
|
if 'device_id' not in st.session_state: |
|
st.session_state.device_id = str(uuid.uuid4()) |
|
|
|
|
|
if "feedback_key" not in st.session_state: |
|
st.session_state.feedback_key = 0 |
|
|
|
def isTrue(x) -> bool: |
|
if isinstance(x, bool): |
|
return x |
|
return x.strip().lower() == 'true' |
|
|
|
def launch_bot(): |
|
def reset(): |
|
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?", "avatar": 'π€'}] |
|
st.session_state.ex_prompt = None |
|
st.session_state.first_turn = True |
|
|
|
|
|
def generate_response(question): |
|
response = vq.submit_query(question, languages[st.session_state.language]) |
|
return response |
|
|
|
def generate_streaming_response(question): |
|
response = vq.submit_query_streaming(question, languages[st.session_state.language]) |
|
return response |
|
|
|
def show_example_questions(): |
|
if len(st.session_state.example_messages) > 0 and st.session_state.first_turn: |
|
selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None) |
|
if selected_example: |
|
st.session_state.ex_prompt = selected_example |
|
st.session_state.first_turn = False |
|
return True |
|
return False |
|
|
|
if 'cfg' not in st.session_state: |
|
corpus_keys = str(os.environ['corpus_keys']).split(',') |
|
cfg = OmegaConf.create({ |
|
'corpus_keys': corpus_keys, |
|
'api_key': str(os.environ['api_key']), |
|
'title': os.environ['title'], |
|
'source_data_desc': os.environ['source_data_desc'], |
|
'streaming': isTrue(os.environ.get('streaming', False)), |
|
'prompt_name': os.environ.get('prompt_name', None), |
|
'examples': os.environ.get('examples', None), |
|
'language': 'English' |
|
}) |
|
st.session_state.cfg = cfg |
|
st.session_state.ex_prompt = None |
|
st.session_state.first_turn = True |
|
st.session_state.language = cfg.language |
|
example_messages = [example.strip() for example in cfg.examples.split(",")] |
|
st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples] |
|
|
|
st.session_state.vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name) |
|
|
|
cfg = st.session_state.cfg |
|
vq = st.session_state.vq |
|
st.set_page_config(page_title=cfg.title, layout="wide") |
|
|
|
|
|
with st.sidebar: |
|
image = Image.open('Vectara-logo.png') |
|
st.image(image, width=175) |
|
st.markdown(f"## About\n\n" |
|
f"This demo uses Vectara RAG to ask questions about {cfg.source_data_desc}\n") |
|
|
|
cfg.language = st.selectbox('Language:', languages.keys()) |
|
if st.session_state.language != cfg.language: |
|
st.session_state.language = cfg.language |
|
reset() |
|
st.rerun() |
|
|
|
st.markdown("\n") |
|
bc1, _ = st.columns([1, 1]) |
|
with bc1: |
|
if st.button('Start Over'): |
|
reset() |
|
st.rerun() |
|
|
|
st.markdown("---") |
|
st.markdown( |
|
"## How this works?\n" |
|
"This app was built with [Vectara](https://vectara.com).\n" |
|
"This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n" |
|
) |
|
|
|
st.markdown(f"<center> <h2> Vectara AI Assistant: {cfg.title} </h2> </center>", unsafe_allow_html=True) |
|
|
|
if "messages" not in st.session_state.keys(): |
|
reset() |
|
|
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"], avatar=message["avatar"]): |
|
st.write(message["content"]) |
|
|
|
example_container = st.empty() |
|
with example_container: |
|
if show_example_questions(): |
|
example_container.empty() |
|
st.rerun() |
|
|
|
|
|
if st.session_state.ex_prompt: |
|
prompt = st.session_state.ex_prompt |
|
else: |
|
prompt = st.chat_input() |
|
if prompt: |
|
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'π§βπ»'}) |
|
with st.chat_message("user", avatar="π§βπ»"): |
|
st.write(prompt) |
|
st.session_state.ex_prompt = None |
|
|
|
|
|
if st.session_state.messages[-1]["role"] != "assistant": |
|
with st.chat_message("assistant", avatar="π€"): |
|
if cfg.streaming: |
|
stream = generate_streaming_response(prompt) |
|
response = st.write_stream(stream) |
|
else: |
|
with st.spinner("Thinking..."): |
|
response = generate_response(prompt) |
|
st.write(response) |
|
|
|
response = escape_dollars_outside_latex(response) |
|
message = {"role": "assistant", "content": response, "avatar": 'π€'} |
|
st.session_state.messages.append(message) |
|
|
|
|
|
send_amplitude_data( |
|
user_query=st.session_state.messages[-2]["content"], |
|
chat_response=st.session_state.messages[-1]["content"], |
|
demo_name=cfg["title"], |
|
language=st.session_state.language |
|
) |
|
st.rerun() |
|
|
|
if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != "How may I help you?"): |
|
streamlit_feedback(feedback_type="thumbs", on_submit = thumbs_feedback, key = st.session_state.feedback_key, |
|
kwargs = {"user_query": st.session_state.messages[-2]["content"], |
|
"chat_response": st.session_state.messages[-1]["content"], |
|
"demo_name": cfg["title"], |
|
"response_language": st.session_state.language}) |
|
|
|
if __name__ == "__main__": |
|
launch_bot() |