|
from omegaconf import OmegaConf |
|
from query import VectaraQuery |
|
import os |
|
|
|
import streamlit as st |
|
from streamlit_pills import pills |
|
|
|
from PIL import Image |
|
|
|
max_examples = 6 |
|
|
|
def isTrue(x) -> bool: |
|
if isinstance(x, bool): |
|
return x |
|
return x.strip().lower() == 'true' |
|
|
|
def launch_bot(): |
|
def generate_response(question): |
|
response = vq.submit_query(question) |
|
return response |
|
|
|
def generate_streaming_response(question): |
|
response = vq.submit_query_streaming(question) |
|
return response |
|
|
|
def show_example_questions(): |
|
if len(st.session_state.example_messages) > 0 and st.session_state.first_turn: |
|
selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None) |
|
if selected_example: |
|
st.session_state.ex_prompt = selected_example |
|
st.session_state.first_turn = False |
|
return True |
|
return False |
|
|
|
if 'cfg' not in st.session_state: |
|
corpus_keys = str(os.environ['corpus_keys']).split(',') |
|
cfg = OmegaConf.create({ |
|
'corpus_keys': corpus_keys, |
|
'api_key': str(os.environ['api_key']), |
|
'title': os.environ['title'], |
|
'source_data_desc': os.environ['source_data_desc'], |
|
'streaming': isTrue(os.environ.get('streaming', False)), |
|
'prompt_name': os.environ.get('prompt_name', None), |
|
'examples': os.environ.get('examples', None) |
|
}) |
|
st.session_state.cfg = cfg |
|
st.session_state.ex_prompt = None |
|
st.session_state.first_turn = True |
|
example_messages = [example.strip() for example in cfg.examples.split(",")] |
|
st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples] |
|
|
|
st.session_state.vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name) |
|
|
|
cfg = st.session_state.cfg |
|
vq = st.session_state.vq |
|
st.set_page_config(page_title=cfg.title, layout="wide") |
|
|
|
|
|
with st.sidebar: |
|
image = Image.open('Vectara-logo.png') |
|
st.image(image, width=175) |
|
st.markdown(f"## About\n\n" |
|
f"This demo uses Retrieval Augmented Generation to ask questions about {cfg.source_data_desc}\n\n") |
|
|
|
st.markdown("---") |
|
st.markdown( |
|
"## How this works?\n" |
|
"This app was built with [Vectara](https://vectara.com).\n" |
|
"Vectara's [Indexing API](https://docs.vectara.com/docs/api-reference/indexing-apis/indexing) was used to ingest the data into a Vectara corpus (or index).\n\n" |
|
"This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n" |
|
) |
|
st.markdown("---") |
|
|
|
|
|
st.markdown(f"<center> <h2> Vectara AI Assistant: {cfg.title} </h2> </center>", unsafe_allow_html=True) |
|
|
|
if "messages" not in st.session_state.keys(): |
|
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}] |
|
|
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.write(message["content"]) |
|
|
|
example_container = st.empty() |
|
with example_container: |
|
if show_example_questions(): |
|
example_container.empty() |
|
st.rerun() |
|
|
|
|
|
if st.session_state.ex_prompt: |
|
prompt = st.session_state.ex_prompt |
|
else: |
|
prompt = st.chat_input() |
|
if prompt: |
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
with st.chat_message("user"): |
|
st.write(prompt) |
|
st.session_state.ex_prompt = None |
|
|
|
|
|
if st.session_state.messages[-1]["role"] != "assistant": |
|
with st.chat_message("assistant"): |
|
if cfg.streaming: |
|
stream = generate_streaming_response(prompt) |
|
response = st.write_stream(stream) |
|
else: |
|
with st.spinner("Thinking..."): |
|
response = generate_response(prompt) |
|
st.write(response) |
|
message = {"role": "assistant", "content": response} |
|
st.session_state.messages.append(message) |
|
st.rerun() |
|
|
|
if __name__ == "__main__": |
|
launch_bot() |