|
import sys |
|
import toml |
|
from omegaconf import OmegaConf |
|
from query import VectaraQuery |
|
import os |
|
|
|
import streamlit as st |
|
from PIL import Image |
|
from functools import partial |
|
|
|
def set_query(q: str): |
|
st.session_state['query'] = q |
|
|
|
def launch_bot(): |
|
def get_answer(question): |
|
response = vq.submit_query(question) |
|
return response |
|
|
|
corpus_ids = list(eval(os.environ['corpus_ids'])) |
|
questions = list(eval(os.environ['examples'])) |
|
cfg = OmegaConf.create({ |
|
'customer_id': os.environ['customer_id'], |
|
'corpus_ids': corpus_ids, |
|
'api_key': os.environ['api_key'], |
|
'title': os.environ['title'], |
|
'description': os.environ['description'], |
|
'examples': questions, |
|
'source_data_desc': os.environ['source_data_desc'] |
|
}) |
|
vq = VectaraQuery(cfg.api_key, cfg.customer_id, cfg.corpus_ids) |
|
st.set_page_config(page_title=cfg.title, layout="wide") |
|
|
|
|
|
with st.sidebar: |
|
image = Image.open('Vectara-logo.png') |
|
st.markdown(f"## Welcome to {cfg.title}\n\n" |
|
f"With this demo uses [Grounded Generation](https://vectara.com/grounded-generation-making-generative-ai-safe-trustworthy-more-relevant/) to ask questions about {cfg.source_data_desc}\n\n") |
|
|
|
st.markdown("---") |
|
st.markdown( |
|
"## How this works?\n" |
|
"This app was built with [Vectara](https://vectara.com).\n" |
|
"Vectara's [Indexing API](https://docs.vectara.com/docs/api-reference/indexing-apis/indexing) was used to ingest the data into a Vectara corpus (or index).\n\n" |
|
"This app uses Vectara API to query the corpus and present the results to you, answering your question.\n\n" |
|
) |
|
st.markdown("---") |
|
st.image(image, width=250) |
|
|
|
st.markdown(f"<center> <h2> Vectara demo app: {cfg.title} </h2> </center>", unsafe_allow_html=True) |
|
st.markdown(f"<center> <h4> {cfg.description} <h4> </center>", unsafe_allow_html=True) |
|
|
|
|
|
main_col, questions_col = st.columns([4, 2], gap="medium") |
|
with main_col: |
|
cols = st.columns([1, 8], gap="small") |
|
cols[0].markdown("""<h5>Search</h5>""", unsafe_allow_html=True) |
|
cols[1].text_input(label="search", key='query', max_chars=256, label_visibility='collapsed', help="Enter your question here") |
|
|
|
st.markdown("<h5>Response</h5>", unsafe_allow_html=True) |
|
response_text = st.empty() |
|
response_text.text_area(f" ", placeholder="The answer will appear here.", disabled=True, |
|
key="response", height=1, label_visibility='collapsed') |
|
with questions_col: |
|
st.markdown("<h5 style='text-align:center; color: red'> Sample questions </h5>", unsafe_allow_html=True) |
|
for q in list(cfg.examples): |
|
st.button(q, on_click=partial(set_query, q), use_container_width=True) |
|
|
|
|
|
|
|
if st.session_state.get('query'): |
|
query = st.session_state['query'] |
|
response = get_answer(query) |
|
response_text.markdown(response) |
|
|
|
if __name__ == "__main__": |
|
launch_bot() |
|
|