|
import requests |
|
import json |
|
import re |
|
from urllib.parse import quote |
|
|
|
def extract_between_tags(text, start_tag, end_tag): |
|
start_index = text.find(start_tag) |
|
end_index = text.find(end_tag, start_index) |
|
return text[start_index+len(start_tag):end_index-len(end_tag)] |
|
|
|
class CitationNormalizer(): |
|
|
|
def __init__(self, responses, docs): |
|
self.docs = docs |
|
self.responses = responses |
|
self.refs = [] |
|
|
|
def normalize_citations(self, summary): |
|
start_tag = "%START_SNIPPET%" |
|
end_tag = "%END_SNIPPET%" |
|
|
|
|
|
pattern = r'\[\d{1,2}\]' |
|
matches = [match.span() for match in re.finditer(pattern, summary)] |
|
|
|
|
|
for match in matches: |
|
start, end = match |
|
response_num = int(summary[start+1:end-1]) |
|
doc_num = self.responses[response_num-1]['documentIndex'] |
|
metadata = {item['name']: item['value'] for item in self.docs[doc_num]['metadata']} |
|
text = extract_between_tags(self.responses[response_num-1]['text'], start_tag, end_tag) |
|
if 'url' in metadata.keys(): |
|
url = f"{metadata['url']}#:~:text={quote(text)}" |
|
if url not in self.refs: |
|
self.refs.append(url) |
|
|
|
|
|
refs_dict = {url:(inx+1) for inx,url in enumerate(self.refs)} |
|
for match in reversed(matches): |
|
start, end = match |
|
response_num = int(summary[start+1:end-1]) |
|
doc_num = self.responses[response_num-1]['documentIndex'] |
|
metadata = {item['name']: item['value'] for item in self.docs[doc_num]['metadata']} |
|
text = extract_between_tags(self.responses[response_num-1]['text'], start_tag, end_tag) |
|
if 'url' in metadata.keys(): |
|
url = f"{metadata['url']}#:~:text={quote(text)}" |
|
citation_inx = refs_dict[url] |
|
summary = summary[:start] + f'[\[{citation_inx}\]]({url})' + summary[end:] |
|
else: |
|
summary = summary[:start] + summary[end:] |
|
|
|
return summary |
|
|
|
class VectaraQuery(): |
|
def __init__(self, api_key: str, customer_id: str, corpus_ids: list[str], prompt_name: str = None): |
|
self.customer_id = customer_id |
|
self.corpus_ids = corpus_ids |
|
self.api_key = api_key |
|
self.prompt_name = prompt_name if prompt_name else "vectara-experimental-summary-ext-2023-12-11-sml" |
|
self.conv_id = None |
|
|
|
def get_body(self, query_str: str): |
|
corpora_key_list = [{ |
|
'customer_id': self.customer_id, 'corpus_id': corpus_id, 'lexical_interpolation_config': {'lambda': 0.005} |
|
} for corpus_id in self.corpus_ids |
|
] |
|
|
|
return { |
|
'query': [ |
|
{ |
|
'query': query_str, |
|
'start': 0, |
|
'numResults': 50, |
|
'corpusKey': corpora_key_list, |
|
'context_config': { |
|
'sentences_before': 2, |
|
'sentences_after': 2, |
|
'start_tag': "%START_SNIPPET%", |
|
'end_tag': "%END_SNIPPET%", |
|
}, |
|
'rerankingConfig': |
|
{ |
|
'rerankerId': 272725719, |
|
'mmrConfig': { |
|
'diversityBias': 0.3 |
|
} |
|
}, |
|
'summary': [ |
|
{ |
|
'responseLang': 'eng', |
|
'maxSummarizedResults': 10, |
|
'summarizerPromptName': self.prompt_name, |
|
'chat': { |
|
'store': True, |
|
'conversationId': self.conv_id |
|
}, |
|
} |
|
] |
|
} |
|
] |
|
} |
|
|
|
def get_headers(self): |
|
return { |
|
"Content-Type": "application/json", |
|
"Accept": "application/json", |
|
"customer-id": self.customer_id, |
|
"x-api-key": self.api_key, |
|
"grpc-timeout": "60S" |
|
} |
|
|
|
def submit_query(self, query_str: str): |
|
|
|
endpoint = f"https://api.vectara.io/v1/query" |
|
body = self.get_body(query_str) |
|
|
|
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers()) |
|
if response.status_code != 200: |
|
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}") |
|
return "Sorry, something went wrong in my brain. Please try again later." |
|
|
|
res = response.json() |
|
|
|
top_k = 10 |
|
summary = res['responseSet'][0]['summary'][0]['text'] |
|
responses = res['responseSet'][0]['response'][:top_k] |
|
docs = res['responseSet'][0]['document'] |
|
chat = res['responseSet'][0]['summary'][0].get('chat', None) |
|
|
|
if chat and chat['status'] is not None: |
|
st_code = chat['status'] |
|
print(f"Chat query failed with code {st_code}") |
|
if st_code == 'RESOURCE_EXHAUSTED': |
|
self.conv_id = None |
|
return 'Sorry, Vectara chat turns exceeds plan limit.' |
|
return 'Sorry, something went wrong in my brain. Please try again later.' |
|
|
|
self.conv_id = chat['conversationId'] if chat else None |
|
summary = CitationNormalizer(responses, docs).normalize_citations(summary) |
|
return summary |
|
|
|
def submit_query_streaming(self, query_str: str): |
|
|
|
endpoint = f"https://api.vectara.io/v1/stream-query" |
|
body = self.get_body(query_str) |
|
|
|
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers(), stream=True) |
|
if response.status_code != 200: |
|
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}") |
|
return "Sorry, something went wrong in my brain. Please try again later." |
|
|
|
chunks = [] |
|
accumulated_text = "" |
|
pattern_max_length = 50 |
|
for line in response.iter_lines(): |
|
if line: |
|
data = json.loads(line.decode('utf-8')) |
|
res = data['result'] |
|
response_set = res['responseSet'] |
|
if response_set is None: |
|
|
|
summary = res.get('summary', None) |
|
if summary is None or len(summary)==0: |
|
continue |
|
else: |
|
chat = summary.get('chat', None) |
|
if chat and chat.get('status', None): |
|
st_code = chat['status'] |
|
print(f"Chat query failed with code {st_code}") |
|
if st_code == 'RESOURCE_EXHAUSTED': |
|
self.conv_id = None |
|
return 'Sorry, Vectara chat turns exceeds plan limit.' |
|
return 'Sorry, something went wrong in my brain. Please try again later.' |
|
conv_id = chat.get('conversationId', None) if chat else None |
|
if conv_id: |
|
self.conv_id = conv_id |
|
|
|
chunk = summary['text'] |
|
accumulated_text += chunk |
|
if len(accumulated_text) > pattern_max_length: |
|
accumulated_text = re.sub(r"\[\d+\]", "", accumulated_text) |
|
accumulated_text = re.sub(r"\s+\.", ".", accumulated_text) |
|
out_chunk = accumulated_text[:-pattern_max_length] |
|
chunks.append(out_chunk) |
|
yield out_chunk |
|
accumulated_text = accumulated_text[-pattern_max_length:] |
|
|
|
if summary['done']: |
|
break |
|
|
|
|
|
if len(accumulated_text) > 0: |
|
accumulated_text = re.sub(r" \[\d+\]\.", ".", accumulated_text) |
|
chunks.append(accumulated_text) |
|
yield accumulated_text |
|
|
|
return ''.join(chunks) |
|
|