|
import requests |
|
import json |
|
import re |
|
from urllib.parse import quote |
|
|
|
def extract_between_tags(text, start_tag, end_tag): |
|
start_index = text.find(start_tag) |
|
end_index = text.find(end_tag, start_index) |
|
return text[start_index+len(start_tag):end_index-len(end_tag)] |
|
|
|
class VectaraQuery(): |
|
def __init__(self, api_key: str, customer_id: int, corpus_ids: list): |
|
self.customer_id = customer_id |
|
self.corpus_ids = corpus_ids |
|
self.api_key = api_key |
|
self.conv_id = None |
|
|
|
def submit_query(self, query_str: str): |
|
corpora_key_list = [{ |
|
'customer_id': str(self.customer_id), 'corpus_id': str(corpus_id), 'lexical_interpolation_config': {'lambda': 0.025} |
|
} for corpus_id in self.corpus_ids |
|
] |
|
|
|
endpoint = f"https://api.vectara.io/v1/query" |
|
start_tag = "%START_SNIPPET%" |
|
end_tag = "%END_SNIPPET%" |
|
headers = { |
|
"Content-Type": "application/json", |
|
"Accept": "application/json", |
|
"customer-id": str(self.customer_id), |
|
"x-api-key": self.api_key, |
|
"grpc-timeout": "60S" |
|
} |
|
body = { |
|
'query': [ |
|
{ |
|
'query': query_str, |
|
'start': 0, |
|
'numResults': 10, |
|
'corpusKey': corpora_key_list, |
|
'context_config': { |
|
'sentences_before': 2, |
|
'sentences_after': 2, |
|
'start_tag': start_tag, |
|
'end_tag': end_tag, |
|
}, |
|
'summary': [ |
|
{ |
|
'responseLang': 'eng', |
|
'maxSummarizedResults': 7, |
|
'summarizerPromptName': 'vectara-experimental-summary-ext-2023-10-23-med', |
|
'chat': { |
|
'store': True, |
|
'conversationId': self.conv_id |
|
} |
|
} |
|
] |
|
} |
|
] |
|
} |
|
|
|
print(body) |
|
|
|
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=headers) |
|
if response.status_code != 200: |
|
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}") |
|
return "Sorry, something went wrong in my brain. Please try again later." |
|
|
|
res = response.json() |
|
|
|
summary = res['responseSet'][0]['summary'][0]['text'] |
|
responses = res['responseSet'][0]['response'] |
|
docs = res['responseSet'][0]['document'] |
|
self.conv_id = res['responseSet'][0]['summary'][0]['chat']['conversationId'] |
|
pattern = r'\[\d{1,2}\]' |
|
matches = [match.span() for match in re.finditer(pattern, summary)] |
|
|
|
|
|
refs = [] |
|
for match in matches: |
|
start, end = match |
|
response_num = int(summary[start+1:end-1]) |
|
doc_num = responses[response_num-1]['documentIndex'] |
|
metadata = {item['name']: item['value'] for item in docs[doc_num]['metadata']} |
|
text = extract_between_tags(responses[response_num-1]['text'], start_tag, end_tag) |
|
url = f"{metadata['url']}#:~:text={quote(text)}" |
|
if url not in refs: |
|
refs.append(url) |
|
|
|
|
|
refs_dict = {url:(inx+1) for inx,url in enumerate(refs)} |
|
for match in reversed(matches): |
|
start, end = match |
|
response_num = int(summary[start+1:end-1]) |
|
doc_num = responses[response_num-1]['documentIndex'] |
|
metadata = {item['name']: item['value'] for item in docs[doc_num]['metadata']} |
|
text = extract_between_tags(responses[response_num-1]['text'], start_tag, end_tag) |
|
url = f"{metadata['url']}#:~:text={quote(text)}" |
|
citation_inx = refs_dict[url] |
|
summary = summary[:start] + f'[\[{citation_inx}\]]({url})' + summary[end:] |
|
|
|
return summary |
|
|