|
import sys |
|
import toml |
|
from omegaconf import OmegaConf |
|
from query import VectaraQuery |
|
import os |
|
|
|
import streamlit as st |
|
from PIL import Image |
|
|
|
|
|
def launch_bot(): |
|
def generate_response(question): |
|
response = vq.submit_query(question) |
|
return response |
|
|
|
corpus_ids = str(os.environ['corpus_ids']).split(',') |
|
questions = list(eval(os.environ['examples'])) |
|
cfg = OmegaConf.create({ |
|
'customer_id': str(os.environ['customer_id']), |
|
'corpus_ids': corpus_ids, |
|
'api_key': str(os.environ['api_key']), |
|
'title': os.environ['title'], |
|
'description': os.environ['description'], |
|
'examples': questions, |
|
'source_data_desc': os.environ['source_data_desc'] |
|
}) |
|
|
|
if vq is None: |
|
vq = VectaraQuery(cfg.api_key, cfg.customer_id, cfg.corpus_ids) |
|
|
|
st.set_page_config(page_title=cfg.title, layout="wide") |
|
|
|
|
|
with st.sidebar: |
|
image = Image.open('Vectara-logo.png') |
|
st.markdown(f"## Welcome to {cfg.title}\n\n" |
|
f"With this demo uses Retieval Augmented Generation to ask questions about {cfg.source_data_desc}\n\n") |
|
|
|
st.markdown("---") |
|
st.markdown( |
|
"## How this works?\n" |
|
"This app was built with [Vectara](https://vectara.com).\n" |
|
"Vectara's [Indexing API](https://docs.vectara.com/docs/api-reference/indexing-apis/indexing) was used to ingest the data into a Vectara corpus (or index).\n\n" |
|
"This app uses Vectara Chat API to query the corpus and present the results to you, answering your question.\n\n" |
|
) |
|
st.markdown("---") |
|
st.image(image, width=250) |
|
|
|
st.markdown(f"<center> <h2> Vectara chat demo: {cfg.title} </h2> </center>", unsafe_allow_html=True) |
|
st.markdown(f"<center> <h4> {cfg.description} <h4> </center>", unsafe_allow_html=True) |
|
|
|
if "messages" not in st.session_state.keys(): |
|
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}] |
|
|
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.write(message["content"]) |
|
|
|
|
|
if prompt := st.chat_input(): |
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
with st.chat_message("user"): |
|
st.write(prompt) |
|
|
|
|
|
if st.session_state.messages[-1]["role"] != "assistant": |
|
with st.chat_message("assistant"): |
|
with st.spinner("Thinking..."): |
|
response = generate_response(prompt) |
|
st.write(response) |
|
message = {"role": "assistant", "content": response} |
|
st.session_state.messages.append(message) |
|
|
|
if __name__ == "__main__": |
|
vq = None |
|
launch_bot() |
|
|