File size: 4,886 Bytes
7f46a81 a05cb39 7f46a81 eaf872d 7f46a81 eaf872d f26592e 7f46a81 eaf872d 8ca1a6a eaf872d 7f46a81 a05cb39 eaf872d fd0ad1b eaf872d fd0ad1b 8ca1a6a eaf872d fd0ad1b 8ca1a6a fd0ad1b eaf872d 7f46a81 ea58cde a05cb39 eaf872d a05cb39 8ca1a6a a05cb39 eaf872d 8ca1a6a eaf872d a05cb39 7f46a81 eaf872d 7f46a81 7ff5239 eaf872d 39e2176 eaf872d 39e2176 a05cb39 7f46a81 8ca1a6a 7f46a81 eaf872d 8ca1a6a eaf872d f26592e a05cb39 eaf872d a05cb39 eaf872d a05cb39 eaf872d fd0ad1b eaf872d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import requests
import json
class VectaraQuery():
def __init__(self, api_key: str, corpus_keys: list[str], prompt_name: str = None):
self.corpus_keys = corpus_keys
self.api_key = api_key
self.prompt_name = prompt_name if prompt_name else "vectara-summary-ext-24-05-sml"
self.conv_id = None
def get_body(self, query_str: str, response_lang: str, stream: False):
corpora_list = [{
'corpus_key': corpus_key, 'lexical_interpolation': 0.005
} for corpus_key in self.corpus_keys
]
return {
'query': query_str,
'search':
{
'corpora': corpora_list,
'offset': 0,
'limit': 50,
'context_configuration':
{
'sentences_before': 2,
'sentences_after': 2,
'start_tag': "%START_SNIPPET%",
'end_tag': "%END_SNIPPET%",
},
'reranker':
{
"type": "chain",
"rerankers": [
{
"type": "customer_reranker",
"reranker_name": "Rerank_Multilingual_v1"
},
{
"type": "mmr",
"diversity_bias": 0.05
}
]
},
},
'generation':
{
'generation_preset_name': self.prompt_name,
'max_used_search_results': 7,
'response_language': response_lang,
'citations':
{
'style': 'markdown',
'url_pattern': '{doc.url}'
},
'enable_factual_consistency_score': True
},
'chat':
{
'store': True
},
'stream_response': stream
}
def get_headers(self):
return {
"Content-Type": "application/json",
"Accept": "application/json",
"x-api-key": self.api_key,
"grpc-timeout": "60S"
}
def get_stream_headers(self):
return {
"Content-Type": "application/json",
"Accept": "text/event-stream",
"x-api-key": self.api_key,
"grpc-timeout": "60S"
}
def submit_query(self, query_str: str, language: str):
if self.conv_id:
endpoint = f"https://api.vectara.io/v2/chats/{self.conv_id}/turns"
else:
endpoint = "https://api.vectara.io/v2/chats"
body = self.get_body(query_str, language, stream=False)
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers())
if response.status_code != 200:
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
if response.status_code == 429:
return "Sorry, Vectara chat turns exceeds plan limit."
return "Sorry, something went wrong in my brain. Please try again later."
res = response.json()
if self.conv_id is None:
self.conv_id = res['chat_id']
summary = res['answer']
return summary
def submit_query_streaming(self, query_str: str, language: str):
if self.conv_id:
endpoint = f"https://api.vectara.io/v2/chats/{self.conv_id}/turns"
else:
endpoint = "https://api.vectara.io/v2/chats"
body = self.get_body(query_str, language, stream=True)
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_stream_headers(), stream=True)
if response.status_code != 200:
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
if response.status_code == 429:
return "Sorry, Vectara chat turns exceeds plan limit."
return "Sorry, something went wrong in my brain. Please try again later."
chunks = []
for line in response.iter_lines():
line = line.decode('utf-8')
if line: # filter out keep-alive new lines
key, value = line.split(':', 1)
if key == 'data':
line = json.loads(value)
if line['type'] == 'generation_chunk':
chunk = line['generation_chunk']
chunks.append(chunk)
yield chunk
elif line['type'] == 'chat_info':
self.conv_id = line['chat_id']
return ''.join(chunks) |