Spaces:
Running
Running
import requests | |
import json | |
class VectaraQuery(): | |
def __init__(self, api_key: str, corpus_keys: list[str], prompt_name: str = None): | |
self.corpus_keys = corpus_keys | |
self.api_key = api_key | |
self.prompt_name = prompt_name if prompt_name else "vectara-summary-ext-24-05-sml" | |
self.conv_id = None | |
def get_body(self, query_str: str, response_lang: str, stream: False): | |
corpora_list = [{ | |
'corpus_key': corpus_key, 'lexical_interpolation': 0.005 | |
} for corpus_key in self.corpus_keys | |
] | |
return { | |
'query': query_str, | |
'search': | |
{ | |
'corpora': corpora_list, | |
'offset': 0, | |
'limit': 50, | |
'context_configuration': | |
{ | |
'sentences_before': 2, | |
'sentences_after': 2, | |
'start_tag': "%START_SNIPPET%", | |
'end_tag': "%END_SNIPPET%", | |
}, | |
'reranker': | |
{ | |
"type": "chain", | |
"rerankers": [ | |
{ | |
"type": "customer_reranker", | |
"reranker_name": "Rerank_Multilingual_v1" | |
}, | |
{ | |
"type": "mmr", | |
"diversity_bias": 0.05 | |
} | |
] | |
}, | |
}, | |
'generation': | |
{ | |
'generation_preset_name': self.prompt_name, | |
'max_used_search_results': 7, | |
'response_language': response_lang, | |
'citations': | |
{ | |
'style': 'markdown', | |
'url_pattern': '{doc.url}' | |
}, | |
'enable_factual_consistency_score': True | |
}, | |
'chat': | |
{ | |
'store': True | |
}, | |
'stream_response': stream | |
} | |
def get_headers(self): | |
return { | |
"Content-Type": "application/json", | |
"Accept": "application/json", | |
"x-api-key": self.api_key, | |
"grpc-timeout": "60S" | |
} | |
def get_stream_headers(self): | |
return { | |
"Content-Type": "application/json", | |
"Accept": "text/event-stream", | |
"x-api-key": self.api_key, | |
"grpc-timeout": "60S" | |
} | |
def submit_query(self, query_str: str, language: str): | |
if self.conv_id: | |
endpoint = f"https://api.vectara.io/v2/chats/{self.conv_id}/turns" | |
else: | |
endpoint = "https://api.vectara.io/v2/chats" | |
body = self.get_body(query_str, language, stream=False) | |
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers()) | |
if response.status_code != 200: | |
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}") | |
if response.status_code == 429: | |
return "Sorry, Vectara chat turns exceeds plan limit." | |
return "Sorry, something went wrong in my brain. Please try again later." | |
res = response.json() | |
if self.conv_id is None: | |
self.conv_id = res['chat_id'] | |
summary = res['answer'] | |
return summary | |
def submit_query_streaming(self, query_str: str, language: str): | |
if self.conv_id: | |
endpoint = f"https://api.vectara.io/v2/chats/{self.conv_id}/turns" | |
else: | |
endpoint = "https://api.vectara.io/v2/chats" | |
body = self.get_body(query_str, language, stream=True) | |
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_stream_headers(), stream=True) | |
if response.status_code != 200: | |
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}") | |
if response.status_code == 429: | |
return "Sorry, Vectara chat turns exceeds plan limit." | |
return "Sorry, something went wrong in my brain. Please try again later." | |
chunks = [] | |
for line in response.iter_lines(): | |
line = line.decode('utf-8') | |
if line: # filter out keep-alive new lines | |
key, value = line.split(':', 1) | |
if key == 'data': | |
line = json.loads(value) | |
if line['type'] == 'generation_chunk': | |
chunk = line['generation_chunk'] | |
chunks.append(chunk) | |
yield chunk | |
elif line['type'] == 'chat_info': | |
self.conv_id = line['chat_id'] | |
return ''.join(chunks) |