Spaces:
Running
on
Zero
Running
on
Zero
Vadim Borisov
commited on
Commit
β’
f94dad6
1
Parent(s):
ef71985
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,71 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
import torch
|
|
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
def
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
demo = gr.Interface(fn=greet, inputs=gr.Number(), outputs=gr.Text())
|
14 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
import torch
|
4 |
+
import random
|
5 |
|
6 |
+
# Load model and tokenizer
|
7 |
+
model_name = "tabularisai/robust-sentiment-analysis"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
10 |
|
11 |
+
# Function to predict sentiment
|
12 |
+
def predict_sentiment(text):
|
13 |
+
inputs = tokenizer(text.lower(), return_tensors="pt", truncation=True, padding=True, max_length=512)
|
14 |
+
with torch.no_grad():
|
15 |
+
outputs = model(**inputs)
|
16 |
+
|
17 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
18 |
+
predicted_class = torch.argmax(probabilities, dim=-1).item()
|
19 |
+
|
20 |
+
sentiment_map = {0: "Very Negative", 1: "Negative", 2: "Neutral", 3: "Positive", 4: "Very Positive"}
|
21 |
+
return sentiment_map[predicted_class], {k: float(v) for k, v in zip(sentiment_map.values(), probabilities[0])}
|
22 |
+
|
23 |
+
# Function to generate random example
|
24 |
+
def random_example():
|
25 |
+
examples = [
|
26 |
+
"I absolutely loved this movie! The acting was superb and the plot was engaging.",
|
27 |
+
"The service at this restaurant was terrible. I'll never go back.",
|
28 |
+
"The product works as expected. Nothing special, but it gets the job done.",
|
29 |
+
"I'm somewhat disappointed with my purchase. It's not as good as I hoped.",
|
30 |
+
"This book changed my life! I couldn't put it down and learned so much."
|
31 |
+
]
|
32 |
+
return random.choice(examples)
|
33 |
+
|
34 |
+
# Gradio interface
|
35 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
36 |
+
gr.Markdown(
|
37 |
+
"""
|
38 |
+
# π Sentiment Analysis Wizard
|
39 |
+
Discover the emotional tone behind any text with our advanced AI model!
|
40 |
+
"""
|
41 |
+
)
|
42 |
+
|
43 |
+
with gr.Row():
|
44 |
+
with gr.Column(scale=2):
|
45 |
+
text_input = gr.Textbox(label="Enter your text here", placeholder="Type or paste your text...")
|
46 |
+
random_btn = gr.Button("Get Random Example")
|
47 |
+
|
48 |
+
with gr.Column(scale=1):
|
49 |
+
sentiment_output = gr.Textbox(label="Overall Sentiment")
|
50 |
+
confidence_output = gr.Label(label="Confidence Scores")
|
51 |
+
|
52 |
+
analyze_btn = gr.Button("Analyze Sentiment", variant="primary")
|
53 |
+
|
54 |
+
gr.Markdown(
|
55 |
+
"""
|
56 |
+
### How it works
|
57 |
+
This app uses a state-of-the-art language model to analyze the sentiment of your text.
|
58 |
+
It classifies the input into one of five categories: Very Negative, Negative, Neutral, Positive, or Very Positive.
|
59 |
+
|
60 |
+
Try it out with your own text or click "Get Random Example" for inspiration!
|
61 |
+
"""
|
62 |
+
)
|
63 |
+
|
64 |
+
def analyze(text):
|
65 |
+
sentiment, confidences = predict_sentiment(text)
|
66 |
+
return sentiment, confidences
|
67 |
+
|
68 |
+
analyze_btn.click(analyze, inputs=text_input, outputs=[sentiment_output, confidence_output])
|
69 |
+
random_btn.click(random_example, outputs=text_input)
|
70 |
|
|
|
71 |
demo.launch()
|