Spaces:
Sleeping
Sleeping
File size: 26,166 Bytes
c5385c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
#!/usr/bin/env python
import datetime
import hashlib
import json
import os
import random
import tempfile
import gradio as gr
import torch
from huggingface_hub import HfApi
from share_btn import community_icon_html, loading_icon_html, share_js
# isort: off
from model import Model
from settings import (
DEBUG,
DEFAULT_CUSTOM_TIMESTEPS_1,
DEFAULT_CUSTOM_TIMESTEPS_2,
DEFAULT_NUM_IMAGES,
DEFAULT_NUM_STEPS_3,
DISABLE_SD_X4_UPSCALER,
GALLERY_COLUMN_NUM,
HF_TOKEN,
MAX_NUM_IMAGES,
MAX_NUM_STEPS,
MAX_QUEUE_SIZE,
MAX_SEED,
SHOW_ADVANCED_OPTIONS,
SHOW_CUSTOM_TIMESTEPS_1,
SHOW_CUSTOM_TIMESTEPS_2,
SHOW_DEVICE_WARNING,
SHOW_DUPLICATE_BUTTON,
SHOW_NUM_IMAGES,
SHOW_NUM_STEPS_1,
SHOW_NUM_STEPS_2,
SHOW_NUM_STEPS_3,
SHOW_UPSCALE_TO_256_BUTTON,
UPLOAD_REPO_ID,
UPLOAD_RESULT_IMAGE,
)
# isort: on
TITLE = '# [DeepFloyd IF](https://github.com/deep-floyd/IF)'
DESCRIPTION = 'The DeepFloyd IF model has been initially released as a non-commercial research-only model. Please make sure you read and abide to the [LICENSE](https://huggingface.co/spaces/DeepFloyd/deepfloyd-if-license) before using it.'
DISCLAIMER = 'In this demo, the DeepFloyd team may collect prompts, and user preferences (which of the images the user chose to upscale) for improving future models'
FOOTER = """<div class="footer">
<p>Model by <a href="https://huggingface.co/DeepFloyd" style="text-decoration: underline;" target="_blank">DeepFloyd</a> supported by <a href="https://huggingface.co/stabilityai" style="text-decoration: underline;" target="_blank">Stability AI</a>
</p>
</div>
<div class="acknowledgments">
<p><h4>LICENSE</h4>
The model is licensed with a bespoke non-commercial research-only license <a href="https://huggingface.co/spaces/DeepFloyd/deepfloyd-if-license" style="text-decoration: underline;" target="_blank">DeepFloyd IF Research License Agreement</a> license. The license forbids you from sharing any content for commercial use, or that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/DeepFloyd/deepfloyd-if-license" style="text-decoration: underline;" target="_blank">read the license</a></p>
<p><h4>Biases and content acknowledgment</h4>
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, explicit content and violence. The model was trained on a subset of the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a> and is meant for research purposes. You can read more in the <a href="https://huggingface.co/DeepFloyd/IF-I-IF-v1.0" style="text-decoration: underline;" target="_blank">model card</a></p>
</div>
"""
if SHOW_DUPLICATE_BUTTON:
SPACE_ID = os.getenv('SPACE_ID')
DESCRIPTION += f'\n<p><a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space%20to%20skip%20the%20queue-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>'
if SHOW_DEVICE_WARNING and not torch.cuda.is_available():
DESCRIPTION += '\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>'
model = Model()
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_stage2_index(evt: gr.SelectData) -> int:
return evt.index
def check_if_stage2_selected(index: int) -> None:
if index == -1:
raise gr.Error(
'You need to select the image you would like to upscale from the Stage 1 results by clicking.'
)
hf_api = HfApi(token=HF_TOKEN)
if UPLOAD_REPO_ID:
hf_api.create_repo(repo_id=UPLOAD_REPO_ID,
private=True,
repo_type='dataset',
exist_ok=True)
def get_param_file_hash_name(param_filepath: str) -> str:
if not UPLOAD_REPO_ID:
return ''
with open(param_filepath, 'rb') as f:
md5 = hashlib.md5(f.read()).hexdigest()
utcnow = datetime.datetime.utcnow().strftime('%Y-%m-%d-%H-%M-%S-%f')
return f'{utcnow}-{md5}'
def upload_stage1_result(stage1_param_path: str, stage1_result_path: str,
save_name: str) -> None:
if not UPLOAD_REPO_ID:
return
try:
random_folder = random.randint(0,1000)
hf_api.upload_file(path_or_fileobj=stage1_param_path,
path_in_repo=f'stage1_params/{random_folder}/{save_name}.json',
repo_id=UPLOAD_REPO_ID,
repo_type='dataset')
hf_api.upload_file(path_or_fileobj=stage1_result_path,
path_in_repo=f'stage1_results/{random_folder}/{save_name}.pth',
repo_id=UPLOAD_REPO_ID,
repo_type='dataset')
except Exception as e:
print(e)
def upload_stage2_info(stage1_param_file_hash_name: str,
stage2_output_path: str,
selected_index_for_upscale: int, seed_2: int,
guidance_scale_2: float, custom_timesteps_2: str,
num_inference_steps_2: int) -> None:
if not UPLOAD_REPO_ID:
return
if not stage1_param_file_hash_name:
raise ValueError
stage2_params = {
'stage1_param_file_hash_name': stage1_param_file_hash_name,
'selected_index_for_upscale': selected_index_for_upscale,
'seed_2': seed_2,
'guidance_scale_2': guidance_scale_2,
'custom_timesteps_2': custom_timesteps_2,
'num_inference_steps_2': num_inference_steps_2,
}
with tempfile.NamedTemporaryFile(mode='w', delete=False) as param_file:
param_file.write(json.dumps(stage2_params))
stage2_param_file_hash_name = get_param_file_hash_name(param_file.name)
save_name = f'{stage1_param_file_hash_name}_{stage2_param_file_hash_name}'
try:
random_folder = random.randint(0,1000)
hf_api.upload_file(path_or_fileobj=param_file.name,
path_in_repo=f'stage2_params/{random_folder}/{save_name}.json',
repo_id=UPLOAD_REPO_ID,
repo_type='dataset')
if UPLOAD_RESULT_IMAGE:
hf_api.upload_file(path_or_fileobj=stage2_output_path,
path_in_repo=f'stage2_results/{random_folder}/{save_name}.png',
repo_id=UPLOAD_REPO_ID,
repo_type='dataset')
except Exception as e:
print(e)
def upload_stage2_3_info(stage1_param_file_hash_name: str,
stage2_3_output_path: str,
selected_index_for_upscale: int, seed_2: int,
guidance_scale_2: float, custom_timesteps_2: str,
num_inference_steps_2: int, prompt: str,
negative_prompt: str, seed_3: int,
guidance_scale_3: float,
num_inference_steps_3: int) -> None:
if not UPLOAD_REPO_ID:
return
if not stage1_param_file_hash_name:
raise ValueError
stage2_3_params = {
'stage1_param_file_hash_name': stage1_param_file_hash_name,
'selected_index_for_upscale': selected_index_for_upscale,
'seed_2': seed_2,
'guidance_scale_2': guidance_scale_2,
'custom_timesteps_2': custom_timesteps_2,
'num_inference_steps_2': num_inference_steps_2,
'prompt': prompt,
'negative_prompt': negative_prompt,
'seed_3': seed_3,
'guidance_scale_3': guidance_scale_3,
'num_inference_steps_3': num_inference_steps_3,
}
with tempfile.NamedTemporaryFile(mode='w', delete=False) as param_file:
param_file.write(json.dumps(stage2_3_params))
stage2_3_param_file_hash_name = get_param_file_hash_name(param_file.name)
save_name = f'{stage1_param_file_hash_name}_{stage2_3_param_file_hash_name}'
try:
random_folder = random.randint(0,1000)
hf_api.upload_file(path_or_fileobj=param_file.name,
path_in_repo=f'stage2_3_params/{random_folder}/{save_name}.json',
repo_id=UPLOAD_REPO_ID,
repo_type='dataset')
if UPLOAD_RESULT_IMAGE:
hf_api.upload_file(
path_or_fileobj=stage2_3_output_path,
path_in_repo=f'stage2_3_results/{random_folder}/{save_name}.png',
repo_id=UPLOAD_REPO_ID,
repo_type='dataset')
except Exception as e:
print(e)
def update_upscale_button(selected_index: int) -> tuple[dict, dict]:
if selected_index == -1:
return gr.update(interactive=False), gr.update(interactive=False)
else:
return gr.update(interactive=True), gr.update(interactive=True)
def _update_result_view(show_gallery: bool) -> tuple[dict, dict]:
return gr.update(visible=show_gallery), gr.update(visible=not show_gallery)
def show_gallery_view() -> tuple[dict, dict]:
return _update_result_view(True)
def show_upscaled_view() -> tuple[dict, dict]:
return _update_result_view(False)
examples = [
'high quality dslr photo, a photo product of a lemon inspired by natural and organic materials, wooden accents, intricately decorated with glowing vines of led lights, inspired by baroque luxury',
'paper quilling, extremely detailed, paper quilling of a nordic mountain landscape, 8k rendering',
'letters made of candy on a plate that says "diet"',
'a photo of a violet baseball cap with yellow text: "deep floyd". 50mm lens, photo realism, cine lens. violet baseball cap says "deep floyd". reflections, render. yellow stitch text "deep floyd"',
'ultra close-up color photo portrait of rainbow owl with deer horns in the woods',
'a cloth embroidered with the text "laion" and an embroidered cute baby lion face',
'product image of a crochet Cthulhu the great old one emerging from a spacetime wormhole made of wool',
'a little green budgie parrot driving small red toy car in new york street, photo',
'origami dancer in white paper, 3d render, ultra-detailed, on white background, studio shot.',
'glowing mushrooms in a natural environment with smoke in the frame',
'a subway train\'s digital sign saying "open source", vsco preset, 35mm photo, film grain, in a dim subway station',
'a bowl full of few adorable golden doodle puppies, the doodles dusted in powdered sugar and look delicious, bokeh, cannon. professional macro photo, super detailed. cute sweet golden doodle confectionery, baking puppies in powdered sugar in the bowl',
'a face of a woman made completely out of foliage, twigs, leaves and flowers, side view'
]
with gr.Blocks(css='style.css') as demo:
gr.Markdown(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Box():
with gr.Row(elem_id='prompt-container').style(equal_height=True):
with gr.Column():
prompt = gr.Text(
label='Prompt',
show_label=False,
max_lines=1,
placeholder='Enter your prompt',
elem_id='prompt-text-input',
).style(container=False)
negative_prompt = gr.Text(
label='Negative prompt',
show_label=False,
max_lines=1,
placeholder='Enter a negative prompt',
elem_id='negative-prompt-text-input',
).style(container=False)
generate_button = gr.Button('Generate').style(full_width=False)
with gr.Column() as gallery_view:
gallery = gr.Gallery(label='Stage 1 results',
show_label=False,
elem_id='gallery').style(
columns=GALLERY_COLUMN_NUM,
object_fit='contain')
gr.Markdown('Pick your favorite generation to upscale.')
with gr.Row():
upscale_to_256_button = gr.Button(
'Upscale to 256px',
visible=SHOW_UPSCALE_TO_256_BUTTON
or DISABLE_SD_X4_UPSCALER,
interactive=False)
upscale_button = gr.Button('Upscale',
interactive=False,
visible=not DISABLE_SD_X4_UPSCALER)
with gr.Column(visible=False) as upscale_view:
result = gr.Image(label='Result',
show_label=False,
type='filepath',
interactive=False,
elem_id='upscaled-image').style(height=640)
back_to_selection_button = gr.Button('Back to selection')
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button(
"Share to community", elem_id="share-btn")
share_button.click(None, [], [], _js=share_js)
with gr.Accordion('Advanced options',
open=False,
visible=SHOW_ADVANCED_OPTIONS):
with gr.Tabs():
with gr.Tab(label='Generation'):
seed_1 = gr.Slider(label='Seed',
minimum=0,
maximum=MAX_SEED,
step=1,
value=0)
randomize_seed_1 = gr.Checkbox(label='Randomize seed',
value=True)
guidance_scale_1 = gr.Slider(label='Guidance scale',
minimum=1,
maximum=20,
step=0.1,
value=7.0)
custom_timesteps_1 = gr.Dropdown(
label='Custom timesteps 1',
choices=[
'none',
'fast27',
'smart27',
'smart50',
'smart100',
'smart185',
],
value=DEFAULT_CUSTOM_TIMESTEPS_1,
visible=SHOW_CUSTOM_TIMESTEPS_1)
num_inference_steps_1 = gr.Slider(
label='Number of inference steps',
minimum=1,
maximum=MAX_NUM_STEPS,
step=1,
value=100,
visible=SHOW_NUM_STEPS_1)
num_images = gr.Slider(label='Number of images',
minimum=1,
maximum=MAX_NUM_IMAGES,
step=1,
value=DEFAULT_NUM_IMAGES,
visible=SHOW_NUM_IMAGES)
with gr.Tab(label='Super-resolution 1'):
seed_2 = gr.Slider(label='Seed',
minimum=0,
maximum=MAX_SEED,
step=1,
value=0)
randomize_seed_2 = gr.Checkbox(label='Randomize seed',
value=True)
guidance_scale_2 = gr.Slider(label='Guidance scale',
minimum=1,
maximum=20,
step=0.1,
value=4.0)
custom_timesteps_2 = gr.Dropdown(
label='Custom timesteps 2',
choices=[
'none',
'fast27',
'smart27',
'smart50',
'smart100',
'smart185',
],
value=DEFAULT_CUSTOM_TIMESTEPS_2,
visible=SHOW_CUSTOM_TIMESTEPS_2)
num_inference_steps_2 = gr.Slider(
label='Number of inference steps',
minimum=1,
maximum=MAX_NUM_STEPS,
step=1,
value=50,
visible=SHOW_NUM_STEPS_2)
with gr.Tab(label='Super-resolution 2'):
seed_3 = gr.Slider(label='Seed',
minimum=0,
maximum=MAX_SEED,
step=1,
value=0)
randomize_seed_3 = gr.Checkbox(label='Randomize seed',
value=True)
guidance_scale_3 = gr.Slider(label='Guidance scale',
minimum=1,
maximum=20,
step=0.1,
value=9.0)
num_inference_steps_3 = gr.Slider(
label='Number of inference steps',
minimum=1,
maximum=MAX_NUM_STEPS,
step=1,
value=DEFAULT_NUM_STEPS_3,
visible=SHOW_NUM_STEPS_3)
gr.Examples(examples=examples, inputs=prompt, examples_per_page=4)
with gr.Box(visible=DEBUG):
with gr.Row():
with gr.Accordion(label='Hidden params'):
stage1_param_path = gr.Text(label='Stage 1 param path')
stage1_result_path = gr.Text(label='Stage 1 result path')
stage1_param_file_hash_name = gr.Text(
label='Stage 1 param file hash name')
selected_index_for_stage2 = gr.Number(
label='Selected index for Stage 2', value=-1, precision=0)
gr.Markdown(DISCLAIMER)
gr.HTML(FOOTER)
stage1_inputs = [
prompt,
negative_prompt,
seed_1,
num_images,
guidance_scale_1,
custom_timesteps_1,
num_inference_steps_1,
]
stage1_outputs = [
gallery,
stage1_param_path,
stage1_result_path,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed_1, randomize_seed_1],
outputs=seed_1,
queue=False,
).then(
fn=lambda: -1,
outputs=selected_index_for_stage2,
queue=False,
).then(
fn=show_gallery_view,
outputs=[
gallery_view,
upscale_view,
],
queue=False,
).then(
fn=update_upscale_button,
inputs=selected_index_for_stage2,
outputs=[
upscale_button,
upscale_to_256_button,
],
queue=False,
).then(
fn=model.run_stage1,
inputs=stage1_inputs,
outputs=stage1_outputs,
).success(
fn=get_param_file_hash_name,
inputs=stage1_param_path,
outputs=stage1_param_file_hash_name,
queue=False,
).then(
fn=upload_stage1_result,
inputs=[
stage1_param_path,
stage1_result_path,
stage1_param_file_hash_name,
],
queue=False,
)
negative_prompt.submit(
fn=randomize_seed_fn,
inputs=[seed_1, randomize_seed_1],
outputs=seed_1,
queue=False,
).then(
fn=lambda: -1,
outputs=selected_index_for_stage2,
queue=False,
).then(
fn=show_gallery_view,
outputs=[
gallery_view,
upscale_view,
],
queue=False,
).then(
fn=update_upscale_button,
inputs=selected_index_for_stage2,
outputs=[
upscale_button,
upscale_to_256_button,
],
queue=False,
).then(
fn=model.run_stage1,
inputs=stage1_inputs,
outputs=stage1_outputs,
).success(
fn=get_param_file_hash_name,
inputs=stage1_param_path,
outputs=stage1_param_file_hash_name,
queue=False,
).then(
fn=upload_stage1_result,
inputs=[
stage1_param_path,
stage1_result_path,
stage1_param_file_hash_name,
],
queue=False,
)
generate_button.click(
fn=randomize_seed_fn,
inputs=[seed_1, randomize_seed_1],
outputs=seed_1,
queue=False,
).then(
fn=lambda: -1,
outputs=selected_index_for_stage2,
queue=False,
).then(
fn=show_gallery_view,
outputs=[
gallery_view,
upscale_view,
],
queue=False,
).then(
fn=update_upscale_button,
inputs=selected_index_for_stage2,
outputs=[
upscale_button,
upscale_to_256_button,
],
queue=False,
).then(
fn=model.run_stage1,
inputs=stage1_inputs,
outputs=stage1_outputs,
api_name='generate64',
).success(
fn=get_param_file_hash_name,
inputs=stage1_param_path,
outputs=stage1_param_file_hash_name,
queue=False,
).then(
fn=upload_stage1_result,
inputs=[
stage1_param_path,
stage1_result_path,
stage1_param_file_hash_name,
],
queue=False,
)
gallery.select(
fn=get_stage2_index,
outputs=selected_index_for_stage2,
queue=False,
)
selected_index_for_stage2.change(
fn=update_upscale_button,
inputs=selected_index_for_stage2,
outputs=[
upscale_button,
upscale_to_256_button,
],
queue=False,
)
stage2_inputs = [
stage1_result_path,
selected_index_for_stage2,
seed_2,
guidance_scale_2,
custom_timesteps_2,
num_inference_steps_2,
]
upscale_to_256_button.click(
fn=check_if_stage2_selected,
inputs=selected_index_for_stage2,
queue=False,
).then(
fn=randomize_seed_fn,
inputs=[seed_2, randomize_seed_2],
outputs=seed_2,
queue=False,
).then(
fn=show_upscaled_view,
outputs=[
gallery_view,
upscale_view,
],
queue=False,
).then(
fn=model.run_stage2,
inputs=stage2_inputs,
outputs=result,
api_name='upscale256',
).success(
fn=upload_stage2_info,
inputs=[
stage1_param_file_hash_name,
result,
selected_index_for_stage2,
seed_2,
guidance_scale_2,
custom_timesteps_2,
num_inference_steps_2,
],
queue=False,
)
stage2_3_inputs = [
stage1_result_path,
selected_index_for_stage2,
seed_2,
guidance_scale_2,
custom_timesteps_2,
num_inference_steps_2,
prompt,
negative_prompt,
seed_3,
guidance_scale_3,
num_inference_steps_3,
]
upscale_button.click(
fn=check_if_stage2_selected,
inputs=selected_index_for_stage2,
queue=False,
).then(
fn=randomize_seed_fn,
inputs=[seed_2, randomize_seed_2],
outputs=seed_2,
queue=False,
).then(
fn=randomize_seed_fn,
inputs=[seed_3, randomize_seed_3],
outputs=seed_3,
queue=False,
).then(
fn=show_upscaled_view,
outputs=[
gallery_view,
upscale_view,
],
queue=False,
).then(
fn=model.run_stage2_3,
inputs=stage2_3_inputs,
outputs=result,
api_name='upscale1024',
).success(
fn=upload_stage2_3_info,
inputs=[
stage1_param_file_hash_name,
result,
selected_index_for_stage2,
seed_2,
guidance_scale_2,
custom_timesteps_2,
num_inference_steps_2,
prompt,
negative_prompt,
seed_3,
guidance_scale_3,
num_inference_steps_3,
],
queue=False,
)
back_to_selection_button.click(
fn=show_gallery_view,
outputs=[
gallery_view,
upscale_view,
],
queue=False,
)
demo.queue(api_open=False, max_size=MAX_QUEUE_SIZE).launch(debug=DEBUG)
|