Update app.py
Browse files
app.py
CHANGED
@@ -15,6 +15,28 @@ def main():
|
|
15 |
# Extract keywords
|
16 |
if st.button("Extract Keywords"):
|
17 |
keywords = kw_model.extract_keywords(doc)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
st.write("Keywords:")
|
19 |
for keyword, score in keywords:
|
20 |
st.write(f"- {keyword} (Score: {score})")
|
|
|
15 |
# Extract keywords
|
16 |
if st.button("Extract Keywords"):
|
17 |
keywords = kw_model.extract_keywords(doc)
|
18 |
+
|
19 |
+
# Get user choice for MMR
|
20 |
+
apply_mmr = st.checkbox("Apply Maximal Marginal Relevance (MMR)")
|
21 |
+
|
22 |
+
if apply_mmr:
|
23 |
+
# Apply Maximal Marginal Relevance (MMR)
|
24 |
+
selected_keywords = []
|
25 |
+
selected_keywords.append(keywords[0]) # Select the top-scoring keyword
|
26 |
+
|
27 |
+
# Set the MMR hyperparameters
|
28 |
+
lambda_param = 0.7 # Weight for the trade-off between relevance and diversity
|
29 |
+
num_keywords = 5 # Number of keywords to select
|
30 |
+
|
31 |
+
for i in range(1, num_keywords):
|
32 |
+
selected_keywords_scores = [kw[1] for kw in selected_keywords]
|
33 |
+
remaining_keywords = [kw for kw in keywords if kw[0] not in [kw[0] for kw in selected_keywords]]
|
34 |
+
mmr_scores = kw_model.maximal_marginal_relevance(doc, remaining_keywords, selected_keywords_scores, lambda_param)
|
35 |
+
max_mmr_index = mmr_scores.index(max(mmr_scores))
|
36 |
+
selected_keywords.append(remaining_keywords[max_mmr_index])
|
37 |
+
|
38 |
+
keywords = selected_keywords # Update keywords with MMR-selected keywords
|
39 |
+
|
40 |
st.write("Keywords:")
|
41 |
for keyword, score in keywords:
|
42 |
st.write(f"- {keyword} (Score: {score})")
|