vam
commited on
Upload embedding.py
Browse files- embedding.py +20 -0
embedding.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
+
from preprocess import meme_attribute, meme_filename, meme_list
|
3 |
+
# This model supports two prompts: "s2p_query" and "s2s_query" for sentence-to-passage and sentence-to-sentence tasks, respectively.
|
4 |
+
# They are defined in `config_sentence_transformers.json`
|
5 |
+
|
6 |
+
|
7 |
+
# you can also use this model without the features of `use_memory_efficient_attention` and `unpad_inputs`. It can be worked in CPU.
|
8 |
+
model = SentenceTransformer(
|
9 |
+
"dunzhang/stella_en_400M_v5",
|
10 |
+
trust_remote_code=True,
|
11 |
+
device="cpu",
|
12 |
+
config_kwargs={"use_memory_efficient_attention": False, "unpad_inputs": False}
|
13 |
+
)
|
14 |
+
|
15 |
+
docs_list = list(meme_attribute.values())
|
16 |
+
|
17 |
+
doc_embeddings = model.encode(docs_list)
|
18 |
+
|
19 |
+
embedded_dict = {key: embedding for key, embedding in zip(meme_attribute.keys(), doc_embeddings)}
|
20 |
+
|