|
import glob |
|
import os |
|
|
|
import cv2 |
|
import PIL.Image as Image |
|
import numpy as np |
|
|
|
from torch.utils.data import Dataset |
|
import torch.nn.functional as F |
|
|
|
|
|
def load_image(fname, mode='RGB', return_orig=False): |
|
img = np.array(Image.open(fname).convert(mode)) |
|
if img.ndim == 3: |
|
img = np.transpose(img, (2, 0, 1)) |
|
out_img = img.astype('float32') / 255 |
|
if return_orig: |
|
return out_img, img |
|
else: |
|
return out_img |
|
|
|
|
|
def ceil_modulo(x, mod): |
|
if x % mod == 0: |
|
return x |
|
return (x // mod + 1) * mod |
|
|
|
|
|
def pad_img_to_modulo(img, mod): |
|
channels, height, width = img.shape |
|
out_height = ceil_modulo(height, mod) |
|
out_width = ceil_modulo(width, mod) |
|
return np.pad(img, ((0, 0), (0, out_height - height), (0, out_width - width)), mode='symmetric') |
|
|
|
|
|
def pad_tensor_to_modulo(img, mod): |
|
batch_size, channels, height, width = img.shape |
|
out_height = ceil_modulo(height, mod) |
|
out_width = ceil_modulo(width, mod) |
|
return F.pad(img, pad=(0, out_width - width, 0, out_height - height), mode='reflect') |
|
|
|
|
|
def scale_image(img, factor, interpolation=cv2.INTER_AREA): |
|
if img.shape[0] == 1: |
|
img = img[0] |
|
else: |
|
img = np.transpose(img, (1, 2, 0)) |
|
|
|
img = cv2.resize(img, dsize=None, fx=factor, fy=factor, interpolation=interpolation) |
|
|
|
if img.ndim == 2: |
|
img = img[None, ...] |
|
else: |
|
img = np.transpose(img, (2, 0, 1)) |
|
return img |
|
|
|
|
|
class InpaintingDataset(Dataset): |
|
def __init__(self, datadir, img_suffix='.jpg', pad_out_to_modulo=None, scale_factor=None): |
|
self.datadir = datadir |
|
self.mask_filenames = sorted(list(glob.glob(os.path.join(self.datadir, '**', '*mask*.png'), recursive=True))) |
|
self.img_filenames = [fname.rsplit('_mask', 1)[0] + img_suffix for fname in self.mask_filenames] |
|
self.pad_out_to_modulo = pad_out_to_modulo |
|
self.scale_factor = scale_factor |
|
|
|
def __len__(self): |
|
return len(self.mask_filenames) |
|
|
|
def __getitem__(self, i): |
|
image = load_image(self.img_filenames[i], mode='RGB') |
|
mask = load_image(self.mask_filenames[i], mode='L') |
|
result = dict(image=image, mask=mask[None, ...]) |
|
|
|
if self.scale_factor is not None: |
|
result['image'] = scale_image(result['image'], self.scale_factor) |
|
result['mask'] = scale_image(result['mask'], self.scale_factor, interpolation=cv2.INTER_NEAREST) |
|
|
|
if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1: |
|
result['image'] = pad_img_to_modulo(result['image'], self.pad_out_to_modulo) |
|
result['mask'] = pad_img_to_modulo(result['mask'], self.pad_out_to_modulo) |
|
|
|
return result |
|
|
|
class OurInpaintingDataset(Dataset): |
|
def __init__(self, datadir, img_suffix='.jpg', pad_out_to_modulo=None, scale_factor=None): |
|
self.datadir = datadir |
|
self.mask_filenames = sorted(list(glob.glob(os.path.join(self.datadir, 'mask', '**', '*mask*.png'), recursive=True))) |
|
self.img_filenames = [os.path.join(self.datadir, 'img', os.path.basename(fname.rsplit('-', 1)[0].rsplit('_', 1)[0]) + '.png') for fname in self.mask_filenames] |
|
self.pad_out_to_modulo = pad_out_to_modulo |
|
self.scale_factor = scale_factor |
|
|
|
def __len__(self): |
|
return len(self.mask_filenames) |
|
|
|
def __getitem__(self, i): |
|
result = dict(image=load_image(self.img_filenames[i], mode='RGB'), |
|
mask=load_image(self.mask_filenames[i], mode='L')[None, ...]) |
|
|
|
if self.scale_factor is not None: |
|
result['image'] = scale_image(result['image'], self.scale_factor) |
|
result['mask'] = scale_image(result['mask'], self.scale_factor) |
|
|
|
if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1: |
|
result['image'] = pad_img_to_modulo(result['image'], self.pad_out_to_modulo) |
|
result['mask'] = pad_img_to_modulo(result['mask'], self.pad_out_to_modulo) |
|
|
|
return result |
|
|
|
class PrecomputedInpaintingResultsDataset(InpaintingDataset): |
|
def __init__(self, datadir, predictdir, inpainted_suffix='_inpainted.jpg', **kwargs): |
|
super().__init__(datadir, **kwargs) |
|
if not datadir.endswith('/'): |
|
datadir += '/' |
|
self.predictdir = predictdir |
|
self.pred_filenames = [os.path.join(predictdir, os.path.splitext(fname[len(datadir):])[0] + inpainted_suffix) |
|
for fname in self.mask_filenames] |
|
|
|
def __getitem__(self, i): |
|
result = super().__getitem__(i) |
|
result['inpainted'] = load_image(self.pred_filenames[i]) |
|
if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1: |
|
result['inpainted'] = pad_img_to_modulo(result['inpainted'], self.pad_out_to_modulo) |
|
return result |
|
|
|
class OurPrecomputedInpaintingResultsDataset(OurInpaintingDataset): |
|
def __init__(self, datadir, predictdir, inpainted_suffix="png", **kwargs): |
|
super().__init__(datadir, **kwargs) |
|
if not datadir.endswith('/'): |
|
datadir += '/' |
|
self.predictdir = predictdir |
|
self.pred_filenames = [os.path.join(predictdir, os.path.basename(os.path.splitext(fname)[0]) + f'_inpainted.{inpainted_suffix}') |
|
for fname in self.mask_filenames] |
|
|
|
|
|
|
|
def __getitem__(self, i): |
|
result = super().__getitem__(i) |
|
result['inpainted'] = self.file_loader(self.pred_filenames[i]) |
|
|
|
if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1: |
|
result['inpainted'] = pad_img_to_modulo(result['inpainted'], self.pad_out_to_modulo) |
|
return result |
|
|
|
class InpaintingEvalOnlineDataset(Dataset): |
|
def __init__(self, indir, mask_generator, img_suffix='.jpg', pad_out_to_modulo=None, scale_factor=None, **kwargs): |
|
self.indir = indir |
|
self.mask_generator = mask_generator |
|
self.img_filenames = sorted(list(glob.glob(os.path.join(self.indir, '**', f'*{img_suffix}' ), recursive=True))) |
|
self.pad_out_to_modulo = pad_out_to_modulo |
|
self.scale_factor = scale_factor |
|
|
|
def __len__(self): |
|
return len(self.img_filenames) |
|
|
|
def __getitem__(self, i): |
|
img, raw_image = load_image(self.img_filenames[i], mode='RGB', return_orig=True) |
|
mask = self.mask_generator(img, raw_image=raw_image) |
|
result = dict(image=img, mask=mask) |
|
|
|
if self.scale_factor is not None: |
|
result['image'] = scale_image(result['image'], self.scale_factor) |
|
result['mask'] = scale_image(result['mask'], self.scale_factor, interpolation=cv2.INTER_NEAREST) |
|
|
|
if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1: |
|
result['image'] = pad_img_to_modulo(result['image'], self.pad_out_to_modulo) |
|
result['mask'] = pad_img_to_modulo(result['mask'], self.pad_out_to_modulo) |
|
return result |