File size: 1,313 Bytes
24eb05d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
from typing import List
import torch
import torch.nn.functional as F
def masked_l2_loss(pred, target, mask, weight_known, weight_missing):
per_pixel_l2 = F.mse_loss(pred, target, reduction='none')
pixel_weights = mask * weight_missing + (1 - mask) * weight_known
return (pixel_weights * per_pixel_l2).mean()
def masked_l1_loss(pred, target, mask, weight_known, weight_missing):
per_pixel_l1 = F.l1_loss(pred, target, reduction='none')
pixel_weights = mask * weight_missing + (1 - mask) * weight_known
return (pixel_weights * per_pixel_l1).mean()
def feature_matching_loss(fake_features: List[torch.Tensor], target_features: List[torch.Tensor], mask=None):
if mask is None:
res = torch.stack([F.mse_loss(fake_feat, target_feat)
for fake_feat, target_feat in zip(fake_features, target_features)]).mean()
else:
res = 0
norm = 0
for fake_feat, target_feat in zip(fake_features, target_features):
cur_mask = F.interpolate(mask, size=fake_feat.shape[-2:], mode='bilinear', align_corners=False)
error_weights = 1 - cur_mask
cur_val = ((fake_feat - target_feat).pow(2) * error_weights).mean()
res = res + cur_val
norm += 1
res = res / norm
return res
|