File size: 2,075 Bytes
24eb05d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
#!/usr/bin/env python3
import os
from argparse import ArgumentParser
def ssim_fid100_f1(metrics, fid_scale=100):
ssim = metrics.loc['total', 'ssim']['mean']
fid = metrics.loc['total', 'fid']['mean']
fid_rel = max(0, fid_scale - fid) / fid_scale
f1 = 2 * ssim * fid_rel / (ssim + fid_rel + 1e-3)
return f1
def find_best_checkpoint(model_list, models_dir):
with open(model_list) as f:
models = [m.strip() for m in f.readlines()]
with open(f'{model_list}_best', 'w') as f:
for model in models:
print(model)
best_f1 = 0
best_epoch = 0
best_step = 0
with open(os.path.join(models_dir, model, 'train.log')) as fm:
lines = fm.readlines()
for line_index in range(len(lines)):
line = lines[line_index]
if 'Validation metrics after epoch' in line:
sharp_index = line.index('#')
cur_ep = line[sharp_index + 1:]
comma_index = cur_ep.index(',')
cur_ep = int(cur_ep[:comma_index])
total_index = line.index('total ')
step = int(line[total_index:].split()[1].strip())
total_line = lines[line_index + 5]
if not total_line.startswith('total'):
continue
words = total_line.strip().split()
f1 = float(words[-1])
print(f'\tEpoch: {cur_ep}, f1={f1}')
if f1 > best_f1:
best_f1 = f1
best_epoch = cur_ep
best_step = step
f.write(f'{model}\t{best_epoch}\t{best_step}\t{best_f1}\n')
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('model_list')
parser.add_argument('models_dir')
args = parser.parse_args()
find_best_checkpoint(args.model_list, args.models_dir)
|