File size: 5,365 Bytes
e2483e1 a035e35 e2483e1 73f4a97 e2483e1 a035e35 ba0ca62 a035e35 ba0ca62 a035e35 240e297 a035e35 f22dba5 88f9d70 f22dba5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import pandas as pd
import gradio as gr
from typing import List
import plotly.express as px
from tabs.tool_win import sort_key
HEIGHT = 600
WIDTH = 1000
def get_error_data_overall_by_market(error_df: pd.DataFrame) -> pd.DataFrame:
"""Gets the error data for the given tools and calculates the error percentage."""
error_total = (
error_df.groupby(["request_month_year_week", "market_creator"], sort=False)
.agg({"total_requests": "sum", "1": "sum", "0": "sum"})
.reset_index()
)
error_total["error_perc"] = (error_total["1"] / error_total["total_requests"]) * 100
error_total.columns = error_total.columns.astype(str)
error_total["error_perc"] = error_total["error_perc"].apply(lambda x: round(x, 4))
return error_total
def plot_error_data_by_market(error_all_df: pd.DataFrame) -> gr.Plot:
# Sort the unique values of request_month_year_week
sorted_categories = sorted(
error_all_df["request_month_year_week"].unique(), key=sort_key
)
# Create a categorical type with a specific order
error_all_df["request_month_year_week"] = pd.Categorical(
error_all_df["request_month_year_week"],
categories=sorted_categories,
ordered=True,
)
# Sort the DataFrame based on the new categorical column
error_all_df = error_all_df.sort_values("request_month_year_week")
fig = px.bar(
error_all_df,
x="request_month_year_week",
y="error_perc",
color="market_creator",
barmode="group",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={
"market_creator": ["pearl", "quickstart", "all"],
"request_month_year_week": sorted_categories,
},
)
fig.update_layout(
xaxis_title="Week",
yaxis_title="Error Percentage",
legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(value=fig)
def plot_tool_error_data_by_market(error_raw: pd.DataFrame, tool: str) -> gr.Plot:
error_df = error_raw.copy(deep=True)
error_tool = error_df[error_df["tool"] == tool]
error_tool.columns = error_tool.columns.astype(str)
error_tool["error_perc"] = error_tool["error_perc"].apply(lambda x: round(x, 4))
# Sort the unique values of request_month_year_week
sorted_categories = sorted(
error_tool["request_month_year_week"].unique(), key=sort_key
)
# Create a categorical type with a specific order
error_tool["request_month_year_week"] = pd.Categorical(
error_tool["request_month_year_week"],
categories=sorted_categories,
ordered=True,
)
# Sort the DataFrame based on the new categorical column
error_tool = error_tool.sort_values("request_month_year_week")
fig = px.bar(
error_tool,
x="request_month_year_week",
y="error_perc",
color="market_creator",
barmode="group",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={
"market_creator": ["pearl", "quickstart", "all"],
"request_month_year_week": sorted_categories,
},
)
fig.update_layout(
xaxis_title="Week",
yaxis_title="Error Percentage %",
legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(value=fig)
def plot_week_error_data_by_market(error_df: pd.DataFrame, week: str) -> gr.Plot:
error_week = error_df[error_df["request_month_year_week"] == week]
error_week.columns = error_week.columns.astype(str)
error_week["error_perc"] = error_week["error_perc"].apply(lambda x: round(x, 4))
fig = px.bar(
error_week,
x="tool",
y="error_perc",
color="market_creator",
barmode="group",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={
"market_creator": ["pearl", "quickstart", "all"],
},
)
fig.update_layout(
xaxis_title="Tool",
yaxis_title="Error Percentage %",
legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(value=fig)
def plot_weekly_errors_by_mech(errors_by_mech: pd.DataFrame) -> gr.Plot:
"""Function to plot the weekly errors by mech address"""
fig = px.bar(
errors_by_mech,
x="request_month_year_week",
y="requests",
color="error_cat",
barmode="group",
color_discrete_sequence=["green", "orange"],
labels={
"requestmonthyearweek": "Month-Year-Week",
"requests": "Number of Requests",
"error_cat": "Error Category",
"errors_percentage": "Percentage",
},
text="errors_percentage",
height=600,
width=800,
facet_col="mech_address",
facet_col_spacing=0.5,
facet_col_wrap=1,
)
fig.update_traces(
texttemplate="%{y} (%{text:.2f}%)",
textposition="outside",
textangle=0,
cliponaxis=False,
)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(value=fig)
|