Spaces:
Running
Running
import streamlit as st | |
from transformers import AutoModel, AutoTokenizer | |
import os | |
import base64 | |
import io | |
import uuid | |
import shutil | |
from pathlib import Path | |
import time | |
import tempfile | |
model_name = "srimanth-d/GOT_CPU" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id) | |
model = model.eval() | |
UPLOAD_FOLDER = "./uploads" | |
RESULTS_FOLDER = "./results" | |
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: | |
if not os.path.exists(folder): | |
os.makedirs(folder) | |
def image_to_base64(image): | |
buffered = io.BytesIO() | |
image.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode() | |
# Cleanup function for removing old files | |
def cleanup_old_files(): | |
current_time = time.time() | |
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: | |
for file_path in Path(folder).glob('*'): | |
if current_time - file_path.stat().st_mtime > 3600: # 1 hour | |
file_path.unlink() | |
# Function to search and highlight keywords in text | |
def search_in_text(text, keywords): | |
"""Searches for keywords within the text and highlights matches.""" | |
if not keywords: | |
return text | |
highlighted_text = text | |
for keyword in keywords.split(): | |
highlighted_text = highlighted_text.replace(keyword, f"<mark>{keyword}</mark>") | |
return highlighted_text | |
# OCR processing function | |
def run_GOT(image, got_mode, fine_grained_mode="", ocr_color="", ocr_box=""): | |
unique_id = str(uuid.uuid4()) | |
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png") | |
result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html") | |
shutil.copy(image, image_path) | |
try: | |
if got_mode == "plain texts OCR": | |
res = model.chat(tokenizer, image_path, ocr_type='ocr') | |
return res, None | |
elif got_mode == "format texts OCR": | |
res = model.chat(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
elif got_mode == "plain multi-crop OCR": | |
res = model.chat_crop(tokenizer, image_path, ocr_type='ocr') | |
return res, None | |
elif got_mode == "format multi-crop OCR": | |
res = model.chat_crop(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
elif got_mode == "plain fine-grained OCR": | |
res = model.chat(tokenizer, image_path, ocr_type='ocr', ocr_box=ocr_box, ocr_color=ocr_color) | |
return res, None | |
elif got_mode == "format fine-grained OCR": | |
res = model.chat(tokenizer, image_path, ocr_type='format', ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path) | |
res_markdown = res | |
if "format" in got_mode and os.path.exists(result_path): | |
with open(result_path, 'r') as f: | |
html_content = f.read() | |
encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8') | |
iframe_src = f"data:text/html;base64,{encoded_html}" | |
iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>' | |
download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>' | |
return res_markdown, f"{download_link}<br>{iframe}" | |
else: | |
return res_markdown, None | |
except Exception as e: | |
return f"Error: {str(e)}", None | |
finally: | |
if os.path.exists(image_path): | |
os.remove(image_path) | |
# Streamlit interface | |
st.title("GOT OCR 2.0 Model") | |
st.markdown(""" | |
Upload your image below and select your preferred mode. Note that more characters may increase wait times. | |
- **Plain Texts OCR & Format Texts OCR:** Use these modes for basic image-level OCR. Format Text OCR is preferred for better results. | |
- **Plain Multi-Crop OCR & Format Multi-Crop OCR:** Ideal for images with complex content, offering higher-quality results. | |
- **Plain Fine-Grained OCR & Format Fine-Grained OCR:** These modes allow you to specify fine-grained regions on the image for more flexible OCR. Regions can be defined by coordinates or colors (red, blue, green, black or white). | |
""") | |
uploaded_image = st.file_uploader("Upload your image", type=["png", "jpg", "jpeg"]) | |
got_mode = st.selectbox("Choose OCR mode", [ | |
"plain texts OCR", | |
"format texts OCR", | |
"plain multi-crop OCR", | |
"format multi-crop OCR", | |
"plain fine-grained OCR", | |
"format fine-grained OCR" | |
]) | |
if "fine-grained" in got_mode: | |
ocr_box = st.text_input("Input OCR box [x1,y1,x2,y2]") | |
ocr_color = st.selectbox("Choose OCR color", ["red", "green", "blue", "black", "white"]) | |
else: | |
ocr_box = "" | |
ocr_color = "" | |
# Maintain state for OCR result | |
if 'ocr_result' not in st.session_state: | |
st.session_state.ocr_result = None | |
if 'html_result' not in st.session_state: | |
st.session_state.html_result = None | |
if st.button("Run OCR"): | |
if uploaded_image: | |
with tempfile.NamedTemporaryFile(delete=False) as temp: | |
temp.write(uploaded_image.read()) | |
ocr_result, html_result = run_GOT(temp.name, got_mode, ocr_box=ocr_box, ocr_color=ocr_color) | |
st.session_state.ocr_result = ocr_result | |
st.session_state.html_result = html_result | |
st.text_area("OCR Result", ocr_result) | |
else: | |
st.warning("Please upload an image.") | |
# Display the OCR result if it has been set | |
if st.session_state.ocr_result: | |
st.text_area("OCR Result", st.session_state.ocr_result,key="display_area") | |
# Keyword search functionality | |
keywords = st.text_input("Enter keywords for highlighting",key="keyword_input") | |
if keywords: | |
highlighted_text = search_in_text(st.session_state.ocr_result, keywords) | |
st.markdown(highlighted_text, unsafe_allow_html=True) | |
if st.session_state.html_result: | |
st.markdown(st.session_state.html_result, unsafe_allow_html=True) | |
if __name__ == "__main__": | |
cleanup_old_files() | |