userlocallm commited on
Commit
68b11c0
·
verified ·
1 Parent(s): 9de9e43

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -33
app.py CHANGED
@@ -8,7 +8,6 @@ import requests
8
  import logging
9
  import subprocess
10
  from llama_cpp import Llama # Import Llama from llama_cpp
11
- import spacy
12
 
13
  # Configure logging
14
  logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
@@ -21,21 +20,9 @@ def install_requirements():
21
  except subprocess.CalledProcessError as e:
22
  logging.error(f"Failed to install requirements: {e}")
23
 
24
- # Function to download the spaCy model
25
- def download_spacy_model(model_name):
26
- try:
27
- subprocess.check_call([os.sys.executable, '-m', 'spacy', 'download', model_name])
28
- logging.info(f"SpaCy model {model_name} downloaded successfully.")
29
- except subprocess.CalledProcessError as e:
30
- logging.error(f"Failed to download SpaCy model {model_name}: {e}")
31
-
32
  # Install requirements
33
  install_requirements()
34
 
35
- # Download the spaCy model if it doesn't exist
36
- if not spacy.util.is_package('en_core_web_lg'):
37
- download_spacy_model('en_core_web_lg')
38
-
39
  # Create the directory if it doesn't exist
40
  local_dir = "models"
41
  os.makedirs(local_dir, exist_ok=True)
@@ -60,13 +47,7 @@ def download_model(repo_id, filename, save_path):
60
 
61
  # Download the model if it doesn't exist
62
  if not os.path.exists(model_path):
63
- download_model("adeptusnull/llama3.2-1b-wizardml-vicuna-uncensored-finetune-test", filename, model_path)
64
-
65
- # Function to truncate context to fit within the model's context window
66
- def truncate_context(context, max_tokens):
67
- words = context.split()
68
- truncated_context = ' '.join(words[-max_tokens:])
69
- return truncated_context
70
 
71
  def respond(
72
  message,
@@ -86,24 +67,14 @@ def respond(
86
  # Load the model with the maximum context length and control the maximum tokens in the response
87
  llm = Llama(
88
  model_path=model_path,
89
- n_ctx=500, # Set the maximum context length
90
- max_tokens=500 # Control the maximum number of tokens generated in the response
91
  )
92
 
93
  agent = Agent(llm, db_path, system_prompt)
94
  user_id = str(uuid.uuid4()) # Generate a unique user ID for each session
95
 
96
- try:
97
- # Truncate the context to fit within the model's context window
98
- max_context_tokens = 500 # Adjust this based on your model's context window
99
- context = f"{system_prompt}\nUser: {message}\nAssistant: "
100
- truncated_context = truncate_context(context, max_context_tokens)
101
-
102
- response = agent.process_query(user_id, message, truncated_context)
103
- except ValueError as e:
104
- logging.error(f"Error during processing: {e}")
105
- response = "Désolé, il y a eu une erreur lors du traitement de votre requête. Veuillez essayer à nouveau."
106
-
107
  return response
108
 
109
  """
 
8
  import logging
9
  import subprocess
10
  from llama_cpp import Llama # Import Llama from llama_cpp
 
11
 
12
  # Configure logging
13
  logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
 
20
  except subprocess.CalledProcessError as e:
21
  logging.error(f"Failed to install requirements: {e}")
22
 
 
 
 
 
 
 
 
 
23
  # Install requirements
24
  install_requirements()
25
 
 
 
 
 
26
  # Create the directory if it doesn't exist
27
  local_dir = "models"
28
  os.makedirs(local_dir, exist_ok=True)
 
47
 
48
  # Download the model if it doesn't exist
49
  if not os.path.exists(model_path):
50
+ download_model("PurpleAILAB/Llama3.2-3B-uncensored-SQLi-Q4_K_M-GGUF", filename, model_path)
 
 
 
 
 
 
51
 
52
  def respond(
53
  message,
 
67
  # Load the model with the maximum context length and control the maximum tokens in the response
68
  llm = Llama(
69
  model_path=model_path,
70
+ n_ctx=5000, # Set the maximum context length
71
+ max_tokens=512 # Control the maximum number of tokens generated in the response
72
  )
73
 
74
  agent = Agent(llm, db_path, system_prompt)
75
  user_id = str(uuid.uuid4()) # Generate a unique user ID for each session
76
 
77
+ response = agent.process_query(user_id, message)
 
 
 
 
 
 
 
 
 
 
78
  return response
79
 
80
  """