MTC / main.py
userlocallm's picture
Upload 2 files
846b33f verified
# src/main.py
from src.agent import Agent
from src.create_database import load_and_process_dataset # Import from create_database.py
import os
import uuid
import requests
import logging
from llama_cpp import Llama
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Create the directory if it doesn't exist
local_dir = "models"
os.makedirs(local_dir, exist_ok=True)
# Specify the filename for the model
filename = "unsloth.Q4_K_M.gguf"
model_path = os.path.join(local_dir, filename)
# Function to download the model file
def download_model(repo_id, filename, save_path):
# Construct the URL for the model file
url = f"https://huggingface.co/{repo_id}/resolve/main/{filename}"
# Download the model file
response = requests.get(url)
if response.status_code == 200:
with open(save_path, 'wb') as f:
f.write(response.content)
print(f"Model downloaded to {save_path}")
else:
print(f"Failed to download model: {response.status_code}")
# Download the model if it doesn't exist
if not os.path.exists(model_path):
download_model("adeptusnull/llama3.2-1b-wizardml-vicuna-uncensored-finetune-test", filename, model_path)
def main():
model_path = "models/unsloth.Q4_K_M.gguf" # Path to the downloaded model
db_path = "agent.db"
system_prompt = "Vous êtes l'assistant intelligent de Les Chronique MTC. Votre rôle est d'aider les visiteurs en expliquant le contenu des Chroniques, Flash Infos et Chronique-FAQ de Michel Thomas. Utilisez le contexte fourni pour améliorer vos réponses et veillez à ce qu'elles soient précises et pertinentes."
max_tokens = 500
temperature = 0.7
top_p = 0.95
# Check if the database exists, if not, initialize it
if not os.path.exists(db_path):
data_update_path = "data-update.txt"
keyword_dir = "keyword" # Updated keyword directory
load_and_process_dataset(data_update_path, keyword_dir, db_path)
# Load the model
llm = Llama(
model_path=model_path,
n_ctx=572, # Set the maximum context length
max_tokens=max_tokens # Control the maximum number of tokens generated in the response
)
agent = Agent(llm, db_path, system_prompt, max_tokens, temperature, top_p)
while True:
user_id = str(uuid.uuid4()) # Generate a unique user ID for each session
user_query = input("Entrez votre requête: ")
if user_query.lower() == 'exit':
break
try:
response = agent.process_query(user_id, user_query)
print("Réponse:", response)
except Exception as e:
print(f"Erreur lors du traitement de la requête: {e}")
# Clean up expired interactions
agent.memory.cleanup_expired_interactions()
if __name__ == "__main__":
main()