Spaces:
Sleeping
Sleeping
# app.py | |
import gradio as gr | |
from src.agent import Agent | |
from src.create_database import load_and_process_dataset # Import from create_database.py | |
import os | |
import uuid | |
import requests | |
import logging | |
import subprocess | |
from llama_cpp import Llama # Import Llama from llama_cpp | |
import spacy | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Function to install requirements | |
def install_requirements(): | |
try: | |
subprocess.check_call([os.sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt']) | |
logging.info("Requirements installed successfully.") | |
except subprocess.CalledProcessError as e: | |
logging.error(f"Failed to install requirements: {e}") | |
# Function to download the spaCy model | |
def download_spacy_model(model_name): | |
try: | |
subprocess.check_call([os.sys.executable, '-m', 'spacy', 'download', model_name]) | |
logging.info(f"SpaCy model {model_name} downloaded successfully.") | |
except subprocess.CalledProcessError as e: | |
logging.error(f"Failed to download SpaCy model {model_name}: {e}") | |
# Install requirements | |
install_requirements() | |
# Download the spaCy model if it doesn't exist | |
if not spacy.util.is_package('en_core_web_lg'): | |
download_spacy_model('en_core_web_lg') | |
# Create the directory if it doesn't exist | |
local_dir = "models" | |
os.makedirs(local_dir, exist_ok=True) | |
# Specify the filename for the model | |
filename = "unsloth.Q4_K_M.gguf" | |
model_path = os.path.join(local_dir, filename) | |
# Function to download the model file | |
def download_model(repo_id, filename, save_path): | |
# Construct the URL for the model file | |
url = f"https://huggingface.co/{repo_id}/resolve/main/{filename}" | |
# Download the model file | |
response = requests.get(url) | |
if response.status_code == 200: | |
with open(save_path, 'wb') as f: | |
f.write(response.content) | |
print(f"Model downloaded to {save_path}") | |
else: | |
print(f"Failed to download model: {response.status_code}") | |
# Download the model if it doesn't exist | |
if not os.path.exists(model_path): | |
download_model("PurpleAILAB/Llama3.2-3B-uncensored-SQLi-Q4_K_M-GGUF", filename, model_path) | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
): | |
model_path = "models/unsloth.Q4_K_M.gguf" # Path to the downloaded model | |
db_path = "agent.db" | |
system_prompt = system_message | |
# Check if the database exists, if not, initialize it | |
if not os.path.exists(db_path): | |
data_update_path = "data-update.txt" | |
keyword_dir = "keyword" # Updated keyword directory | |
load_and_process_dataset(data_update_path, keyword_dir, db_path) | |
# Load the model with the maximum context length and control the maximum tokens in the response | |
llm = Llama( | |
model_path=model_path, | |
n_ctx=500, # Set the maximum context length | |
max_tokens=500 # Control the maximum number of tokens generated in the response | |
) | |
agent = Agent(llm, db_path, system_prompt) | |
user_id = str(uuid.uuid4()) # Generate a unique user ID for each session | |
response = agent.process_query(user_id, message) | |
return response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="Vous êtes l'assistant intelligent de Les Chronique MTC. Votre rôle est d'aider les visiteurs en expliquant le contenu des Chroniques, Flash Infos et Chronique-FAQ de Michel Thomas. Utilisez le contexte fourni pour améliorer vos réponses et veillez à ce qu'elles soient précises et pertinentes.", label="System message"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |